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This paper accounts for the role of bailout expectations in shaping the dynam-
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and default probabilities. Tracking their evolution allows me to indirectly infer the
relative importance of fundamentals and bailout expectations. Fitting the model to
U.S. data, I find that 28 basis points of the 34-basis-point rise in credit spreads after
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1 Introduction

Since the Global Financial Crisis (GFC), spreads on unsecured bank debt have more than
tripled and remained well above pre-crisis levels. This persistence continued despite
the post-2010 tightening of regulation, which reduced bank leverage and, all else equal,
should have compressed credit spreads by lowering insolvency risk. A plausible driver of
higher spreads is the market’s reassessment of government support: Title II of the Dodd–
Frank Act passed in 2010 sought to curb such expectations by empowering regulators to
impose losses on unsecured creditors.1 However, another potential explanation is that
higher spreads are driven by weaker fundamentals that raised default risk.

Understanding whether the post-2010 increase in credit spreads reflects higher funda-
mental risk or a reduction in bailout expectations is crucial to the design of financial regu-
lation. Capital requirements are typically justified as a way to curb the moral hazard that
arises when bank creditors expect to be shielded from losses by the government (Kareken
& Wallace 1978, Chari & Kehoe 2016a). Yet, evaluating the appropriate stringency of ex-
ante regulation requires explicitly accounting for bailout expectations. If reduced bailout
expectations drive higher spreads, market discipline already curbs risk-taking, and less
tight ex-ante policies may suffice.

The contribution of this paper is to decompose bank credit spreads into a component
driven by bailout expectations and another one driven by fundamentals. To do so, I com-
bine a dynamic model of financial intermediation with estimates of risk-neutral default
probabilities that I recover from equity option prices. Data alone cannot disentangle fun-
damentals from bailout expectations because default probabilities are equilibrium out-
comes of banks’ choices and depend on both forces. Through the lens of the model, the
comovement of credit spreads and default probabilities is informative about the relative
importance of the two components. The model interprets higher credit spreads together
with lower default probabilities as evidence that bailout expectations play an important
role. I find that, of the 34-basis-point rise in credit spreads after 2010, about 28 basis points
are attributable to lower bailout probabilities. The remainder is driven by fundamen-
tals—about 18 basis points—partly offset by tighter regulation, which lowered default
risk and reduced spreads by roughly 12 basis points.

I use this decomposition to evaluate how Dodd-Frank and the post-2010 regulatory
wave reshaped banks’ attitudes toward risk. My model rationalizes banks’ retreat from
very risky asset markets and the rise in the cost of bank credit as the joint outcome of
lower bailout expectations and tighter regulatory requirements. These two forces con-
tributed roughly equally to the increase in risk premia on banks’ assets and lending rates

1Dodd–Frank Wall Street Reform and Consumer Protection Act, Pub. L. 111–203 (2010).
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after 2010. Accordingly, I argue that ignoring bailout expectations risks over-attributing
these trends to regulation alone as perceived state-contingent promises and formal rules
(e.g., capital requirements) operate together to determine banks’ funding costs, capital
structure, and risk-bearing capacity.

To discipline the model, this paper first proposes a new methodology using deriva-
tives contracts written on both banks’ equity and debt to measure the risk-neutral expec-
tation of bank creditors’ losses conditional on the bank defaulting. I begin with a simple
decomposition of credit spreads into a risk-neutral probability of default and an expected
loss given default component. When credit spreads stay high even as risk-neutral default
probabilities fall, they must be driven by higher losses given default. The expected loss
given default equals the probability of no bailout times the loss creditors bear without
government support. If a bailout with probability π makes wholesale creditors whole,
while with probability 1 � π recoveries are tied to the post-default asset value, then a
decline in bailout probabilities mechanically raises the expected loss given default and,
in turn, spreads, even if default risk itself falls. Building on this decomposition, I then
proceed in two steps. First, I read the market-implied chance of default from prices
of put options on the bank’s stock building on the methodology of Carr & Wu (2011).
Second, I combine these option-implied default probabilities with Credit Default Swaps
(CDS) spreads to recover an estimate of the risk-neutral loss given default. Expected
creditor losses were about 10% pre-crisis, surged to roughly 40% in 2007-2009, and have
remained elevated—hovering near 30% through much of the 2010s and still around 20%
by 2020—even as risk-neutral default probabilities reverted to pre-2008 levels. Finally,
consistent with the time-series behavior of expected losses, I show that the post-2010 el-
evation in spreads is driven by higher expected losses given default, while risk-neutral
default probabilities moved in the opposite direction, pushing spreads downward.

However, the post-2010 increase in expected losses—and, consequently, in CDS
spreads—could reflect deteriorating fundamentals rather than a change in perceived
government support. Observational data alone cannot separate shifts in fundamentals
from changes in anticipated government support, because default probabilities are
themselves equilibrium functions of banks’ endogenous decisions and thus depend on
both fundamentals and bailout expectations. I therefore develop a dynamic general
equilibrium model of financial intermediation with bank default and time-varying
bailout probabilities and use it as a measurement device to isolate the role of bailout
expectations. My framework combines elements from the intermediary-asset pricing
literature (He & Krishnamurthy 2013, 2018) with institutional features of the banking
sector (Elenev et al. 2021, Mendicino et al. 2019).

I consider an endowment economy in which Lucas trees are tranched into long-term
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defaultable debt claims and equity claims. Trees are subject to mean-reverting aggregate
shocks and disasters. Banks holds debt securities backed by trees and fund them by issu-
ing deposits, debt, and equity. Deposits trade below market rates and are fully insured by
the government. The government bails out debt holders with a time-varying probability
π. When a bailout is granted, the government pays the full shortfall to debt holders, oth-
erwise investors recover the fraction of post-default asset value. Finally, equity issuance
is costly: banks face adjustment costs which increase the cost of equity relative to other
liabilities.

In this setup, credit spreads on unsecured bank debt vary over time because of fun-
damental risk—namely, the risk that the bank’s assets generate cash flows insufficient to
meet debt obligations—and changes in bailout expectations. While these two forces have
similar effects on spreads, they have different implications for the bank’s insolvency risk.
When the bailout probability is low, the expected loss from default increases dollar-for-
dollar, effectively taxing debt issuance by increasing the weight on default costs. This
leads to an increase in credit spreads (a drop in the price of debt) and induces inter-
mediaries to take on less leverage. As a result, the default probability is lower ex post.
However, when fundamentals deteriorate (e.g., expected asset cash flows fall or risk in-
creases), the expected loss borne by creditors rises. This pushes up credit spreads (debt
funding costs) and, even after banks adjust leverage optimally, raises the probability of
insolvency. Because of these properties, the comovement of credit spreads and default
probabilities provides information about the importance of bailout expectations versus
fundamentals. All else equal, observing persistently higher credit spreads together with
higher default probabilities is interpreted by the model as evidence of a quantitatively
sizable role for fundamentals. By contrast, an increase in credit spreads accompanied
by a declining default probability indicates that bailout expectations are the underlying
source.

In practice, this simple reasoning does not account for the possibility that tighter post-
2010 regulation changed how banks manage risk exposure and reduced insolvency risk.
However, this argument does not impair my identification strategy. If true risk-neutral
default probabilities were lower than my estimates, that would justify lower post-crisis
spreads. Instead, spreads remain persistently higher. Without accounting for changes in
regulation, the model would understate the role of bailout expectations. Hence, to disci-
pline the increase in capital requirements and precisely isolate the role of bailout expecta-
tions, I exploit the fact that, conditional on fundamentals, lower bailout odds and tighter
regulation move credit spreads and the left-tail variance of equity returns in opposite di-
rections in the model. When investors mark down the likelihood of a rescue, spreads rise
since creditors expect bigger losses. Equity tail-volatilities fall because a larger share of
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downside is already borne by shareholders. Tighter regulation works the other way for
credit spreads. By forcing bondholders to share losses ex ante it flattens spreads, yet it
reduces downside volatility for equity, whose residual claim becomes less levered.

After fitting the model to U.S. data, I turn to the main quantitative experiment of the
paper, which consists of measuring the bailout component of credit spreads. I apply the
particle filter to the model and extract the sequence of structural shocks that accounts for
the behavior of credit spreads and risk-neutral default probabilities before, during, and
after the Great Financial Crisis. While doing this, I increase capital requirements from 8%
to 10.5%.2 This matches the increase in correlation between credit spreads and the left-tail
variance of equity returns estimated in the data. Because lower bailout odds would have
pushed the correlation down (spreads up, volatility down), the observed upward break
cleanly identifies—and quantitatively pins down—the dominant role of the post-crisis
regulatory regime.

Equipped with this path of structural shocks, I can compute the bailout component
of credit spreads. To do so, I construct the counterfactual credit spreads that would have
emerged if bailout probabilities were fixed at their pre-crisis level while feeding in the
same sequence of fundamental shocks and changes in regulation. The estimated bailout
probability allows a decomposition of observed credit spreads into a fundamental com-
ponent and a bailout component, while controlling for tighter regulation. The bailout
component of credit spreads is computed as the difference between actual and counter-
factual spreads. The results indicate that diminished bailout odds explain about forty
percent of the post-2010 plateau in spreads, with the remainder accounted for by fun-
damental risk and regulation. The average unsecured spread paid by large U.S. banks
increases by 34 basis points between the pre-2008 and the post-2010 periods. In the coun-
terfactual that holds the pre-crisis bailout probability at its high level, the same spread
rises by only 6 basis points. Hence, the remaining 28 basis points—almost three quarters
of the observed increase—are a pure bailout premium that investors demand once they
expect to bear losses. Within the non-bailout component, deteriorating fundamentals ac-
count for an 18 basis point increase in unsecured spreads, while tighter post-crisis capital
requirements reduced them by about 12 basis points. The intuition is that the increase in
capital requirements, by reducing the leverage ratio of the intermediary and forcing it to
hold more equity, would have pushed down the credit spread by reducing its insolvency

2I infer time-varying regulatory tightness from market prices by exploiting the model-implied sign re-
versal in the relationship between CDS spreads and the downside (left-tail) risk-neutral variance of equity
returns—estimated from out-of-the-money put options—between the pre-2008 and post-2010 periods. In
the model, conditional on fundamentals, changes in regulation and bailout expectations move CDS spreads
and left-tail variance with opposite signs; the observed break in their correlation therefore identifies the
post-crisis tightening of regulation. To purge fundamentals, I control for right-tail (upside) option-implied
moments—constructed from out-of-the-money calls—which, under mild assumptions, load only on funda-
mentals and are largely insensitive to bailout expectations or capital requirements.
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risk.
Finally, I use the model to isolate how the post-crisis decline in bailout expectations

and tighter regulation banks’ willingness to pay for risky assets. After 2010, intermedi-
aries reallocated away from riskier market segments (e.g., leveraged loans, junk bonds,
market-making).3 Moreover, empirical studies documented that stricter capital require-
ments prompted banks to tighten their lending standards (see Baker & Wurgler (2015),
Plosser & Santos (2024) among others). I rationalize these patterns as a response to both
lower bailout expectations and tighter regulation by looking at the model-implied ex-
pected returns and lending rates. I decompose expected returns into two components:
(i) an adjusted risk-free rate reflecting average financing costs and the shadow value of po-
tentially binding capital constraints and (ii) a risk premium that compensates for holding
assets that payout less in bad aggregate states. Lower perceived bailout probabilities af-
fect both components. They raise creditors’ expected losses in bad states—steepening
compensation for negative skewness—and, by removing the implicit subsidy, increase
average uninsured funding costs. Tighter regulation by making leverage constraints
bind more often, it raises the shadow cost of equity and so the risk-free rate component.
Moreover, anticipation that the constraint will bind in the future increases the required
compensation for assets that load on downturns— that is, the risk premium (Aiyagari &
Gertler 1999, Bocola 2016). Quantitatively, movements in risk premia account for about
60% of the post-crisis increase in expected returns. Within that, the decline in bailout
expectations explains around half of the rise in risk premia, with the other half mainly
driven by tighter regulation. A similar pattern is observed with lending rates, which in-
crease by 50 basis points after 2010. Hence, qccounting for the post-crisis fall in perceived
government support is therefore important to explain the observed shift out of riskier
market segments and the higher cost of credit to the real economy, over and above the
tightening of bank regulation. Because regulation and bailout expectations jointly shape
banks’ funding costs, their leverage, and ultimately the pricing of risks on their assets,
omitting the latter will systematically overstate the impact of the former.

Contribution to the literature. My paper contributes to three strands of the literature.
In doing so, it bridges theory and measurement at the intersection of macro-finance, asset
pricing, and bank regulation.

3Kim et al. (2018) analyze the U.S. Interagency Leveraged Lending Guidance and show that—after su-
pervisory clarifications—large, closely supervised banks curtailed leveraged-loan underwriting/holdings,
with activity migrating to nonbanks. Bao et al. (2018) show that Volcker-affected dealers reduced corporate-
bond market-making and inventories, with the sharpest liquidity deterioration for stressed/speculative-
grade bonds. Allahrakha et al. (2019) exploit the underwriting-exemption DiD and confidential trade data
to find 20–45 basis points higher customer costs and declining market share for Volcker-covered dealers in
corporate bonds.
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My paper quantifies the moral hazard channel through which anticipated public sup-
port distorts banks’ leverage and portfolio choices, building on the seminal work of
Kareken & Wallace (1978) and more recent contributions including those of Schneider &
Tornell (2004), Acharya & Yorulmazer (2007), Panageas (2010), Diamond & Rajan (2012),
Farhi & Tirole (2012), Bianchi (2016), Chari & Kehoe (2016b), Nosal & Ordoñez (2016),
Bianchi & Mendoza (2018), Dávila & Walther (2020), Dovis & Kirpalani (2022). The core
idea in all these papers is that the lack of commitment regarding ex-post optimal poli-
cies influences the ex-ante behavior of banks. Building on this insight, I take the bailout
process as exogenous—capturing the market’s perceived probability of government sup-
port—and use the model as a measurement device to identify its role. My analysis is
positive rather than normative: I evaluate the effects of lower bailout expectations on
banks’ funding costs and on their risk-taking incentives. More broadly, the paper offers
a first attempt to quantify, through the lens of a model, the implications of regulators’
limited commitment.

My paper complements empirical efforts to price the bailout subsidy. On the equity
side, prior work studies how expectations of public support are capitalized into equity
valuations (Veronesi & Zingales 2010, Gandhi & Lustig 2015, Kelly et al. 2016, Atkeson
et al. 2019, Minton et al. 2019, Gandhi et al. 2020). On the debt side, Schweikhard &
Tsesmelidakis (2011), Hett & Schmidt (2017), Berndt et al. (2022) examine the effect of
guarantees on banks’ funding costs. My paper belongs to the latter stream and focuses
on debt pricing. Because a subsidy to creditors reduces required compensation in default
states, it is mechanically an implicit subsidy to equity holders as the residual claim. My
contribution to this literature is twofold. First, my paper shows that accurately measur-
ing the role of policies in driving the dynamics of spreads requires a general equilibrium
framework that accounts for the responses of economic agents to those policies and their
feedback into equilibrium prices—benefits that partial equilibrium expositions do not
provide. Second, by using a microfounded model of financial intermediation I can not
only disentangle the role of fundamentals, bailout expectations, and regulation in mov-
ing banks’ credit spreads, but also derive additional implications about how lower bailout
expectations and tighter capital requirements affect banks’ willingness to take risks.

The model adopts the intermediary asset-pricing perspective that financial institu-
tions’ net worth and their frictions drive risk premia (Garleanu & Pedersen 2011, Adrian
& Boyarchenko 2012, He & Krishnamurthy 2013, Brunnermeier & Sannikov 2014, Adrian
et al. 2014, Krishnamurthy & Muir 2017, He & Krishnamurthy 2018, Haddad & Muir
2021, Du et al. 2023), but innovates by allowing the strength of the government guarantee
to feed back into equilibrium leverage, amplifying the cyclicality of expected returns. My
paper argues that changes in perceived state-contingent promises and formal rules (e.g.,
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capital requirements) should be considered jointly when interpreting risk premia in as-
set markets in which intermediaries invest since they both affect their funding costs and
capital structure decisions. Moreover, my contributions pertain not only to the pricing
of financial assets in which intermediaries invest, but also to the pricing of intermediary
liabilities. While much of the literature resorted to behavioral arguments to replicate the
boom–bust pattern in credit valuations (Maxted 2024, Krishnamurthy & Li 2025), in my
main exercise I show that the same dynamics can be replicated with movements in the
perceived probability of a government bailout together with changes in fundamentals.

This paper is organized as follows. Section 2 lays down a simple valuation framework
to estimate the risk-neutral losses given default from option prices and CDS spreads. Sec-
tion 3 documents the time series properties of expected losses. Section 4 presents the
model and Section 5 characterizes the properties of the equilibrium. Section 6 presents
the calibration strategy. Section 7 decomposes observed spreads into bailout, fundamen-
tal and regulation components. Section 8 assesses how bailout expectations and capital
regulation changed banks’ cost of capital and risk exposures after 2010. Section 9 con-
cludes.

2 Measuring Expected Losses Given Default

This section presents an empirical framework to infer the risk-neutral losses given default
using option prices and CDS contracts. Ultimately, the goal is to net out the component
of observed credit spreads that is due to default risk and study the behaviour of the re-
maining component. The framework considers a bank whose assets generate cash flows
allocated between debt and equity, with default occurring when these cash flows are in-
sufficient to meet debt obligations. Upon default, equity is completely wiped out, while
debt holders may be protected by a government bailout, ensuring full repayment. I then
show how to back out the risk-neutral probability of default from American put options
on the bank’s equity following Carr & Wu (2011), and how to combine this with CDS
spreads to extract a measure of the risk-neutral losses given default.

2.1 Pricing Debt, Equity, and the Credit Spread

Let At be the market value of the bank’s assets at date t and let Yt denote the cash flow
rate (interest and principal) produced by those assets over rt, t� 1q. Expectations E�

t r�s

are taken under the risk-neutral measure denoted by the superscript �, and Rf,t is the one-
period gross risk-free rate observed at t.4 For ease of notation, we define the risk-free

4Formally, the risk-neutral measure is an equivalent martingale measure under which all discounted
asset prices are martingales—hence asset prices equal the discounted expectation of future payoffs under
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discount factor from t to τ as

βt,τ �
τ�1¹
s�t

1
Rf,s

.

The risk-neutral present value of the asset cash flows is

Vt �
8̧

τ�t�1

βt,τE�
t r YτAτ s.

Denote by Dt the face value of the bank’s outstanding debt and PD
t the contractual repay-

ment rate (interest plus amortization) per unit of face value due at t. Default occurs when
current asset cash flow cannot cover the debt repayment:

∆t � 1tYtAt PDt Dtu
,

where ∆t is the default indicator. If default takes place, the government implements a
bailout with probability πt, otherwise debtholders recover V̂t ¤ PD

t Dt. Hence the payoff
per unit of face value is

rPD
t � p1�∆tqP

D
t � ∆t

�
πtP

D
t � p1� πtqV̂t{Dt

�
.

The market value of the debt equals the discounted stream of these payoffs:

SDt �
8̧

τ�t�1

βt,τE�
t r
rPD
τ s.

Equityholders receive what is left once the scheduled debt payment is met; they get noth-
ing in default:

rPE
t � p1�∆tq

�
YtAt � PD

t Dt

�
, SEt �

8̧

τ�t�1

βt,τ E�
t

�rPE
τ

�
,

Because equity is wiped out at the first default event, it is economically equivalent to
a perpetual (American) call on the bank’s asset value that expires if the debt payment
cannot be met, i.e., if the bank defaults. Adding debt and equity then yields the condition
for the valuation of the bank

St � SDt � SEt � Vt �
8̧

τ�t�1

βt,τ E�
t

�
πτ∆τ

�
PD
τ Dτ � V̂τ

��
loooooooooooooooooooomoooooooooooooooooooon
value of implicit government guarantee

.

this probability measure.
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The last term reflects the fact that, in default, the state covers part of the repayment short-
fall to creditors and this appears an implicit subsidy to the bank’s franchise value.5

The approach above allows us to decompose the credit spread into:

CSt,τ � F�
t,τloomoon

risk-neutral probability of default

� LGD�
t,τloomoon

risk-neutral expected loss given default

. (1)

In Appendix A.1, I provide the detailed derivations of (1). There, I begin from the
full multi-period pricing identity that writes discounted expected losses as the product
of risk-neutral default probabilities and losses conditional on default, derive the general
maturity-specific expression for LGD�

t,τ, and then show how (1) obtains under three as-
sumptions: (i) a one-year horizon (rolling multi-maturity quotes to a 1y par spread), (ii)
par couponing with unit face value, (iii) a small-spread approximation and (iv) indepen-
dence between recovery and the exact timing of default within the year.

The final step involves two key operations. First, I extract the risk-neutral default
probability from American put option prices on the bank’s equity, following the method-
ology of Carr & Wu (2011). Second, I combine this extracted default probability with
observable CDS spreads to solve for the market-implied risk-neutral expected loss given
default, LGD�.

2.2 Recovering Default Probabilities from Option Prices

Following Carr & Wu (2011), the asset value process tAtut¥0 of the bank is modeled as a
stochastic process with bounded support, and the face value of debt Dt lies strictly inside
those bounds:

At P
�
Al,Ah

�
, 0   Al   Dt   Ah.

Default occurs the first time the lower threshold is hit:

T � inf
 
t ¥ 0 : At ¤ Al

(
.

Such an assumption can be justified by the fact that debt covenants and limited li-
ability drive equity to zero at default yet keep it bounded above in normal times. For
large regulated banks, capital requirements and stress tests accelerate the path to insol-
vency; market capitalization rarely drifts far beyond a plausible recapitalization value,
but once losses push assets below a regulatory threshold the stock price collapses. Hence,
the equity of major banks often trades within a tight corridor punctuated by crash events,

5Formally, the government guarantee is equivalent to a series of digital put options on the bank’s assets,
each paying PD

τ Dτ � V̂τ in the event YτAτ   PD
τ Dτ and zero otherwise.
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qualitatively matching the setting here.
To understand how the Carr & Wu (2011) framework helps us map out default proba-

bilities from option prices, notice first that it is never optimal to exercise the American put
on the bank’s equity before default, because the exercise value Dt �At is negative when
the bank is solvent pAt ¡ Dtq. Then, at default pt � Tq, the equity value SEt � pAt �Dtq

�

falls to zero, so immediately exercising the put yields K. Before default pT ¡ tq, equity is a
cancelable call, bounded above by the upper bound of the default region E :� At�Dt ¡ 0.
Choose any strike K P p0,Es; two cases obtain: (i) if no default occurs before maturity T

pT ¡ Tq, the equity remains above E and the put expires worthless; (ii) if default happens
pT ¤ Tq, equity collapses and the put is exercised instantly.

We now arrive at a result that is central to the empirical methodology: the condition
that allows us to recover default probabilities directly from observed option prices. The
put payoff is an indicator of default scaled by K. Let PuttpK, Tq be the market price at t ¤ T

and define the risk-free discount factor βt,T �
±T�1

s�t R
�1
f,s . Under risk-neutral pricing, we

obtain that the put option price and the default probability are related as follows:

PuttpK, Tq � βt,T KE�
t

�
1tT¤Tu

�
� βt,T KF�

t,T , F�
t,T :� E�

t

�
1tT¤Tu

�
, K P p0,Es.

Figure 1 plots the American put price in the left panel and the corresponding scaled
price PuttpK, Tq{K in the right panel for Morgan Stanley on 28 January 2009 (T � t �

80 days). The vertical line marks the estimated upper bound E of the default region.
Inside that region (shaded area in right panel), the price–strike graph is linear and its
slope equals βt,TF�

t,T . Outside the region, the usual convex option profile re-emerges,
reflecting dependence on pre-default equity dynamics.

When utilizing a single put option to replicate the intended payoff, the underlying
intuition is straightforward. The asset price associated with a deep out-of-the-money
put option either remains above the strike price throughout its life or falls below it.
Correspondingly, the payoff either yields a fixed amount due to default or expires
worthless. There are four possible logical states—asset price above or below the strike
price before and after default. We can rule out two. It is exceedingly unlikely for a default
to occur while the asset price remains above the deep out-of-the-money put’s strike price
both before and after the default event. Conversely, we assume that the government
never bails out equity holders, i.e. the asset price never declines below the strike price
without leading to default.6

6There is evidence that bailout expectations are priced by equity holders (see Kelly et al. (2016) among
others) and, in practice, during the GFC the Paulson plan involved capital injections that supported equity
values (Veronesi & Zingales 2010). If interventions prevent default while allowing equity to dip below
the strike at some point (i.e., bailouts of equity holders), deep out-of-the-money puts can pay off even
without default; interpreting the resulting put slope as a default probability therefore overstates F�. In the
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Finally, I can go back to Equation (1) to back out LGD�
t,T from the option-implied de-

fault probability F�
t,T and the CDS spread CSt,T such that:

LGD�
t,T �

CSt,T
F�
t,T

. (2)

F�
t,T is recovered from deep-out-of-the-money American-put prices on the bank’s equity

while CSt,T is the par CDS premium for the same reference entity. Given these two mar-
ket observables, (2) delivers a simple measure of risk-neutral losses given default that is
internally consistent with both the option and CDS markets.

Figure 1: Put Option Price and Put Option Scaled Price Curves

(a) Put Option Price versus Strike (b) Put Option Scaled Price versus Strike

Notes: the left panel plots the put option price as a function of strike for Morgan Stanley on 01/28/2008, maturity 80 days. The right
panel plots the put option scaled price as a function of strike for Morgan Stanley on 01/28/2008, maturity 80 days. The vertical line
marks the default-region upper bound E and the shaded area represents the default region. The slope of the put price–strike graph in
the default region equals the discounted risk-neutral default probability βt,T F�

t,T .

decomposition CS � F� � LGD�, this contamination mechanically lowers the inferred LGD�. Hence any
such effect biases against finding higher LGD� and cannot explain elevated post-2010 spreads. Moreover,
forces that truly reduce F� (e.g., post-crisis deleveraging from regulation) compress spreads rather than
elevate them. The observed post-2010 combination—normalization of F� alongside persistently higher
spreads—is therefore conservative for my inference and, if anything, strengthens the identification that
diminished bailout protection raised spreads.
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3 Empirical Implementation

3.1 Data

Data on CDS are obtained from IHS Markit. The initial sample consists of daily repre-
sentative CDS quotes on all entities in the financial sector covered by Markit over the
period from January 2000 through December 2022. While the five-year contract is gener-
ally thought to be the most liquid, the sample used here includes data on all maturities
available for every company. When CDS rates are quoted for primary and non-primary
coupons, the former is retained. A similar rule is applied to the primary curve identifier.
Whenever available, all CDS quotes are for a contractual definition of default known as
"no restructuring". Options data were obtained from OptionMetrics. For each selected
date, we examine the options data to identify companies with put options that satisfy the
following criteria: (1) the bid price is greater than zero; (2) the offer price is greater than
0.05; (3) the offer price is no more than five times the bid price; (4) the open interest and
the bid-ask spread are both greater than zero and (5) the absolute value of the put’s delta
does not exceed 15%. Options prices are constructed as averages of highest closing bid
and lowest closing ask prices.

The data from IHS Markit, OptionMetrics, and CRSP are merged based on the permco
identifier for each bank. The final sample with both CDS and options includes 48 banks
from 2000 to 2023.

Detecting the default boundary. The empirical framework described earlier assumes
the existence of a default region r0,Es, which the stock price cannot enter. The location
of this region is unknown ex ante. If American put prices were observable across a con-
tinuum of strikes at the same maturity, the default region would reveal itself because
American put prices are linear in the strike price within the region.

The main innovation introduced here lies in the implementation of the following
adaptive detection approach to identify the default region r0,Es. Beginning with the two
lowest strikes tK1,K2u, for each time t, maturity T , and candidate window size m ranging
from 2 to n, a no-intercept linear regression is estimated:

Put pKiq � βKi � ϵi for i � 1, . . . ,m.

The model’s goodness-of-fit is quantified through a modified R2 metric appropriate for
regression through the origin:

R2 � 1�
°m

i�1
�
Put pKiq � β̂Ki

�2°m
i�1 Put pKiq

2 .
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Statistical validity is maintained by continuing window expansion only while R2 remains
above 0.98. This process identifies the maximal strike Km� where the linear pricing rela-
tionship holds, thereby defining the upper region boundary E � Km� . Within the identi-
fied region tK1, . . . ,Km�u, the parameter β is estimated via constrained least squares:

β̂ �

�
m�¸
i�1

Ki � Put pKiq

�
{

�
m�¸
i�1

K2
i

�

This estimator represents the slope of the linear pricing relationship and corresponds to
the risk-neutral default probability F�

t,T , as derived from the fundamental pricing equa-
tion for default-contingent claims. Appendix A.2 provides a robustness check for the
measure using the Theil–Sen estimator. The Theil–Sen estimator allows for robust estima-
tion of the slope of the regression line even when there are large outliers in the underlying
data. It also corresponds to a trading strategy, which is to invest in the strike pair i and
j that deliver the median risk-neutral default probability. Buying the put of strike Kj and
writing the put of strike Ki yields a payoff of Kj � Ki ¡ 0 if default happens. Because
buying and writing these puts costs a total of PutpKjq � PutpKiq, the normalized spread
of this trading strategy earns exactly one dollar if default happens, corresponding to the
Theil-Sen estimator.

For equity options, the number of banks at each week ranges from around 30 to 100,
with an average of 60 banks. At the reference date, maturities span 1 to 955 days, with
an average of around 150 days. The left panel in Figure 2 plots the number of selected
banks at each reference date of the sample period. The number of companies increased
markedly since mid-2007, coinciding with the start of the financial crisis and again with
the COVID-19 crisis. The right panel in Figure 2 shows where the found put spreads are
available across times to maturity, documenting the distribution of identified put-spread
observations by maturity.

Equity options exhibit the greatest depth and liquidity at short maturities, especially
within one year, while the benchmark CDS contract trades most actively at the five-year
tenor. Whenever I combine data from both CDS contracts and options, to align the two
markets, I consider a common one-year horizon. Table 1 reports the summary statistics
of CDS spreads and default probabilities estimated from options for one-year maturity.
The statistics show that CDS spreads and default probabilities are similar in statistical
behaviors but magnitudes are different. The estimates from the put options have a larger
sample mean, median and a slightly larger standard deviation than the CDS spreads.

Figure 3 plots the median risk neutral default probability F�
t,T (left panel) and CDS

spread CSt,T (right panel) for T � 365 days. Default probabilities and spreads display
strong comovements, especially after the Great Financial Crisis. Both series reach their
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Figure 2: Sample Selection

(a) Number of Banks per Year (b) Put Contracts per Maturity

Notes: the left panel plots the number of banks in each year of the sample period. The right panel plots the number of chosen put
options across different times to maturity (days).

Table 1: Summary Statistics for T � 365

mean median std min max

CSt,365 0.010 0.003 0.039 0.0001 0.994
F�
t,365 0.038 0.025 0.043 0.003 0.575

Notes: the table reports the summary statistics (mean, median, standard deviation, minimum, maximum) for CDS spreads and default
probabilities for one-year maturity.
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peaks during the GFC but while default probabilities come back to their pre-GFC levels,
CDS spreads remain elevated. Remarkably, the Covid-19 crisis is associated with a spike
in default probabilities but a very modest increase in CDS spreads if compared to the
GFC. This divergence is consistent with temporarily elevated bailout expectations during
Covid-19, which would compress CDS spreads despite higher perceived default risk.

Figure 3: Median Risk-Neutral Default Probability and CDS Spread for T � 365

(a) Median F�
t (b) Median CSt

Notes: the left panel plots the risk-neutral default probability at 365 days (gray) and the 4-week moving average (black). The right
panel plots the CDS spreads at 365 days (gray) and the 4-week moving average (black).

3.2 Expected Losses Given Default

The left panel of Figure 4 plots the time series of the median LGD�
t,T for T � 365 days.

LGD�
t,T varies strongly with business cycle conditions. In particular, both the risk-neutral

default probability F�
t,T and expected losses LGD�

t,T are countercyclical. Under the
constant-recovery assumption often used to back out default probabilities from CDS, the
implied mapping is pFCDS

t,T �
CSt,T

¯LGD
�

LGD�
t,T

¯LGD
F�
t,T .

Because LGD�
t,T tends to be higher in downturns—when F�

t,T is also high—the factor
LGD�

t,T{ ¯LGD amplifies variation in pFCDS
t,T , making it more volatile and right-skewed than

the option-implied F�
t,T .7

7Appendix A.3 shows that higher LGD�
i, t, 365 predicts short-horizon increases in F�

i, t�∆t, 365 and de-
creases in CSi, t�∆t, 365 (∆t P t7, 30u days), consistent with cross-market adjustment. Appendix A.4 reports
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Importantly, I compare the mean LGD�
t,T before the Global Financial Crisis (2000–

2007) with the post-crisis decade (2010–2019), constructing Newey–West heteroskedastic-
ity and autocorrelation consistent (HAC) confidence intervals to account for serial corre-
lation. The mean rises from about 11% pre-crisis to about 21% post-crisis—an increase of
roughly 10 percentage points that is highly statistically significant (HAC-robust t � 10.6,
p   10�24). The horizontal red segments in the figure display these period averages
with translucent confidence bands, underscoring a persistent and economically mean-
ingful elevation in expected losses after 2010. Consistent with this pattern, the average
log credit spread increases by 0.409 over 2010–2019. A simple decomposition attributes
�0.556 to higher expected losses given default, LGD�

t,T , and �0.147 to a decline in the
risk-neutral default probability, F�

t,T , leaving a negligible residual. Equivalently, LGD�
t,T

explains about 136% of the post-2010 increase, with F�
t,T offsetting roughly 36%.8

The right panel of Figure 4 shows that the average expected losses for Globally Sys-
temically Important Banks (GSIBs) are lower than for non-GSIBs pre-GFC but higher post-
2010. This indicates that most of the post-2010 shift in the median LGD�

t,T is concentrated
among GSIBs, consistent with Berndt et al. (2022) who emphasize a structural change in
bailout expectations for systemically important institutions. A potential concern is that
the observed variation could instead reflect constraints faced by the principal sellers of
CDS protection—major dealers—but if dealer-side frictions were the dominant driver,
we would expect a similar pattern across all banks; the fact that the shift is concentrated
among GSIBs argues against that alternative.

Motivated by the preceding discussion, I next test systematically whether variation in
LGD�

t,T reflects time-varying market liquidity that raise required premia in both options
and CDS markets. In Appendix A.5, I construct a liquidity-adjusted series of expected
losses. Following Conrad et al. (2020), I regress changes in the logarithm of LGD�

t,T on
changes in security-level and aggregate liquidity proxies (option bid–ask spreads, volume
and open interest; CDS depth; TED–SOFR and VIX)—interpreting TED–SOFR and VIX as
proxies for intermediation constraints—and then accumulate the regression residuals to
obtain an adjusted series that strips out transitory illiquidity and variation in risk-bearing
capacity. The goal is to isolate movements in expected losses driven by underlying credit
fundamentals rather than by liquidity frictions or intermediation-capacity variation that
can mechanically depress or inflate the raw measure. The adjusted series is notably higher
during stress episodes such as 2008–2011, implying that part of the post-crisis decline in

a variance decomposition indicating that expected losses explain approximately 60% of the within-bank
time-series variation in CDS spreads.

8The decomposition regresses logpCSt,T q on logpLGD�
t,T q and logpF�

t,T q with bank fixed effects, and
multiplies the estimated coefficients by the changes in the average values of logpLGD�

t,T q and logpF�
t,T q

between the pre-2008 and post-2010 periods. Component contributions are given by βj �∆x̄j, and shares
are computed relative to the total change in logpCSt,T q.
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Figure 4: Expected Losses Given Default for T � 365

(a) Median LGD�
t,T (b) Average LGD�

t,T for GSIBs and non-GSIBs

Notes: the left panel plots the expected losses LGD�

t,T for a 365-day maturity at weekly frequency (grey line) and 4-weeks moving
average (black line). The red horizontal segments report sample means for the pre-GFC (2000–2007) and post-GFC (2010–2019) periods;
shaded red bands show 95% confidence intervals computed with Newey–West HAC standard errors (excluding observations after
2020). The right panel plots the expected losses for GSIBs (magenta) and non-GSIBs (green) at weekly frequency with 4-weeks moving
average.

unadjusted expected losses reflects improving market liquidity and easing dealer con-
straints rather than better recoveries, whereas in normal times the adjustment is small.
Full regression specification and estimates used to build the adjustment are reported in
Appendix A.5.9

Collectively, these facts suggest that, after 2010 spreads remained elevated even as
risk-neutral default probabilities normalized. It is, however, difficult to determine from
reduced-form evidence alone whether this pattern reflects shifts in underlying credit fun-
damentals (asset values, balance-sheet strength, and liquidation conditions) or changes in
bailout expectations that alter creditors’ effective recoveries. To separately identify these
forces, I now introduce a general equilibrium model of financial intermediation with an
explicit bailout margin. Through the lens of the model, the joint dynamics of F�

t,T and
CSt,T are informative about the relative importance of fundamentals and bailout expecta-
tions because these forces affect intermediaries’ capital structure differently.

9In principle, shifts in CDS counterparty risk could confound the analysis: because CDS are traded
largely among financial institutions, a lower perceived bailout probability can raise counterparty risk and
reduce willingness to pay for protection, mechanically lowering quoted spreads. In practice, evidence
indicates that counterparty risk is negligible given extensive collateralization; see Arora et al. (2012).
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4 Model

I consider a standard model of financial intermediation. Similarly to the macro-banking
literature (see Elenev et al. (2021), Mendicino et al. (2019) among others), the model fea-
tures bank default risk, deposit insurance and capital regulation but in the context of an
endowment economy. Differently, I consider government bailouts of debt holders. The
probability of a government bailout varies over time according to a reduced-form stochas-
tic process.

4.1 Environment

Time is infinite and discrete. The economy is populated by a large number of households;
a continuum of intermediaries; and a government.

Preferences. Households have Epstein–Zin preferences over consumption streams tCu
with intertemporal elasticity of substitution ν and risk aversion γ,

U �

$'&'%p1�βqC 1� 1
ν �β

�
E
�
pU1q1�γ

�	1� 1
ν

1�γ

,/./-
1

1� 1
ν

, (3)

where the discount factor is β P p0, 1q.

Technology. There is a set of islands indexed by ω. Within each island ω, there is a unit
continuum of Lucas trees indexed by z. Tree z on island ω delivers the per-period payoff

y � zωY where Y � Ze�ζd (4)

where z ¡ 0 is an i.i.d. tree-specific productivity shock, ω ¡ 0 is an i.i.d. island shock,
Z ¡ 0 represents aggregate productivity, and d P t0, 1u. d � 1 indicates a disaster state
and in that event output is reduced by the factor e�ζ. Let gp�q and fp�q denote the density
functions of tree-specific and island shocks, respectively.

Market Structure. There are five types of assets: debt and equity claims backed Lucas
trees, non-contingent debt and deposit claims and equity claims issued by financial
intermediaries. Financial intermediaries, or banks for short, are profit-maximizing
entities that invest in the debt claims backed by Lucas trees (while the residual equity
claim is rebated to households). Unlike banks, households do not have access to the
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corporate credit market. This assumption provides a role for intermediaries in trans-
forming long-term risky debt into short-term safe debt. Intermediaries fund these loans
by issuing deposits and bonds and raising equity capital from households. Importantly,
intermediaries face equity issuance costs which make their net worth the relevant state
variables for asset pricing (He & Krishnamurthy 2013, Brunnermeier & Sannikov 2014) as
described later in more detail. Moreover, intermediaries operate under limited liability
and they can default. Finally, the government collects deposit insurance fees from
intermediaries and lump-sum taxes from households in order to finance bailouts to debt
holders and deposit insurance payouts.10

I consider a Recursive Competitive Equilibrium (Prescott & Mehra 2005). Denote by
S the vector that collects the current values of the state variables (both endogenous and
exogenous) and by S1 the next period’s state vector. In principle, the state must keep
track of the entire cross-sectional distributions of household and intermediary assets. In
the model, households can be represented by a stand-in household with wealth W, and
the banking sector aggregates so that the cross-sectional distribution of intermediaries
is summarized by aggregate liabilities L � D � B.11 Hence I work with the state
vector S � rL,W,π,Z,ds. Expectations ESr�s are taken with respect to the conditional
distribution of S1 implied by the state transition law ΓpSq � S1.

We now describe intermediaries and households’ problems as well as the government
in more detail. The full set of Bellman equations and first-order conditions is provided in
Appendix B.

10I assume that the government only covers the shortfall of all creditors but does not bail out equity
holders. This assumption is not without loss of generality since the model-implied default probabilities are
consistent with the data counterpart if bailouts only pertain to bondholders. In Appendix G.1, I provide
an extension of the model in which the government injects equity capital into the intermediary conditional
on default and takes ownership of the intermediary. While all the properties of the model would remain
intact, identification now requires default probabilities that account for the government’s equity injections.

11In Appendix B.2, I show that at the time banks choose their new portfolio, all banks have the same
value and face the same optimization problem. Three properties of the bank problem allow us to obtain
this aggregation result. First, island shocks ω are uncorrelated over time. Second, the value function is
homogeneous of degree one in individual net worth n. Third, at the start of each period intermediaries are
randomly reassigned across islands, so an intermediary’s island identity is i.i.d. over time and independent
of its own balance sheet. Without this reassignment, persistent sorting across islands would generally break
exact aggregation. These properties are used to write the bank value function in terms of the value per unit
of wealth v pSq � V pn; Sq {n, which only depends on the aggregate state vector S.
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4.2 Intermediaries

Individual intermediaries begin each period with net worth

n � P pω, Sqa� d� b. (5)

Here, Ppω, Sqa is the payoff from the asset portfolio given the realization of the island
shock ω, while d and b are, respectively, deposit and bond repayments due. Intermedi-
aries default when n   0; otherwise they continue operating. The rest of this subsection
proceeds in three steps: first, I characterize the asset payoff; second, I describe the prob-
lem of solvent intermediaries; third, I detail the bankruptcy/default resolution.

4.2.1 Intermediaries Assets

Intermediaries hold long-term debt backed by Lucas trees. Long-term debt has face value
a, market price p pSq, amortisation rate δ P p0, 1q, and coupon c. The promised per-period
cash flow is therefore c � p1 � δq � δp pSq. Default by a borrower occurs whenever the
realised payoff from the tree is insufficient, i.e. when y   c � p1 � δq. The per-period
payoff of an intermediary’s loan portfolio, conditional on its own shock ω, is

Ppω, Sq �
�
c� p1� δq � δp pSq

� » 8

zpω,Yq
gpzqdz � p1� ηqωY

» zpω,Yq

0
z gpzqdz, (6)

where the default threshold that solves y � c� p1� δq is given by

zpω, Yq �
c� p1� δq

ωY
. (7)

The first term in (6) represents performing loans that deliver the full contractual payment.
The second captures recoveries from defaulted loans, which transfer a fraction 1 � η

of the realised tree payoff to debtholders. In my framework, bank assets are portfolios
of debt-like securities exposed to non-fully diversifiable credit risk: intermediaries can
diversify across trees within an island but not across islands, so island-level shocks
remain undiversified in their portfolios. Consequently, bank-asset returns have limited
upside and substantial downside risk (Mendicino et al. 2019). A decline in fundamentals
Y depresses the portfolio payoff Ppω, Sq, thereby eroding the intermediary’s net worth
and raising its default probability.
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4.2.2 Solvent Intermediaries

If intermediaries are solvent, namely if their individual net worth is positive, n ¡ 0, then
they solve a portfolio choice problem. They maximize shareholders value by choosing
the amount of assets to purchase for next period a1, the amount of deposits to issue to
households d1 at price qd pSq � 1

1�rdpSq , the amount of bonds to issue b1 at price q pSq �
1

1�rpSq and dividend payouts, x. Intermediaries have a payout target that is a fraction ϕ0

of net worth, n. They can deviate from this target and raise additional equity e that is,
pay out x � ϕ0n� e, but this comes at a convex cost ϕ1

2

�
e
n

�2
n. The intertemporal budget

constraint of the bank can then be written as

n�
�
qd pSq � κ

	
d1 � q

�
d1,b1,a1; S

�
b1 � p pSqa1 � x�

ϕ1

2

� x

n
�ϕ0

	2
n. (8)

The first term represents the book value of equity that the intermediairy has at her dis-
posal at the beginning of the period. The second and third term denote new funds from
deposits and bond issuance at prices q pd1,b1,a1; Sq and qd pSq. The fourth term is new
assets purchased at price p pSq. The last two terms represent the dividend payouts of the
bank net of issuance costs. Intermediaries pay deposit insurance fees κ to the govern-
ment per unit of deposits. They internalize that the price of their debt, q pb1,d1,a1; Sq, is a
function of their default risk and thus their capital structure.

Intermediaries are also subject to the leverage constraint

b1 � d1 ¤ ξp pSqa1. (9)

Constraint (9) is a Basel-style regulatory bank capital constraint. It requires that debt are
collateralized by the intermediary’s portfolio. The parameter ξ determines how much
debt can be issued against each dollar of assets. The assets on the right-hand side of (9)
are evaluated at market prices because levered financial intermediaries face regulatory
constraints that depend on market prices.

The intermediary’s portfolio problem is characterized recursively using the value
function V pn; Sq. Intermediaries discount future payoffs by M pS1, Sq, which is the
stochastic discount factor of households, their equity holders, and operate under limited
liability. The intermediary solves

V pn; Sq � max
x,a1,b1,d1

x�ES
�
M

�
S1, S

�
max

 
V
�
n1; S1

�
, 0
(�

(10)

subject to the budget constraint (8), the capital requirement constraint (9) and the con-
straint that d1 ¤ nD̄1, where D̄1 is a maximum amount of deposits that can be issued
by the intermediary. This constraint captures the fact that intermediaries face costs of
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running their deposit business, such as the cost of maintaining a branch network, and
thus cannot issue unlimited deposits despite being the least costly source of funding. I
assume the maximum deposit capacity to be correlated with the business cycle, such that
D̄1 � D̄� ζD̄Y. The coefficient ζD̄ governs the negative correlation between deposit de-
mand and the business cycle and captures flight to safety events during economic down-
turns (e.g. Martin et al. (2018)).

4.2.3 Bankruptcy

At the beginning of each period, a fraction of intermediaries defaults when n ¤ 0 before
paying dividends to shareholders and choosing the portfolio for next period. The gov-
ernment take ownership of these bankrupt intermediaries and liquidate them to recover
some of the outstanding debt to be paid to debt holders. Bankrupt intermediaries are
replaced by newly started ones that households endow with initial equity n0 per bank.
These new intermediaries then solve problem (10) with n � n0.

Denote aggregate net worth of surviving and newly started intermediaries by N, and
the ratio of new equity over net worth as ẽ � e{N. This ratio is identical across interme-
diaries due to scale invariance. Then the aggregate dividend to households is:

ΠIpSq � N pϕ0 � ẽq �

»
ωPD

n0dFpωq,

where D is the set of defaulting intermediaries (and Dc is the set of non-defaulting inter-
mediaries). The dividend has two parts: (i) all intermediaries, both surviving and newly
started, pay a dividend share ϕ0 � ẽ, out of their net worth, and (ii) newly started inter-
mediaries, equal in mass to bankrupt intermediaries, receive initial equity n0.

4.3 Household

Each period, households receive the payoffs from owning all equity and debt claims on in-
termediaries and trees, yielding financial wealth w. They further pay taxes T pSq. Deposit
quantities D in the model are demand determined, i.e. they are decided by the intermedi-
aries. The households view them as a transfer of resources independent of their actions.
At the same time, households choose consumption c and bonds, b1 to maximize utility (3)
subject to their inter-temporal budget constraint

w� T pSq ¥ c� q pSqb1 � qd pSqD1. (11)
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The transition law for household financial wealth w is given by

w � Π pSq �ΠIpSq �D� b

�»
ωPDc

1dFpωq �
»
ωPD

pπ� p1� πqRVpω, SqqdFpωq
�

, (12)

where RVpω, Sq is the recovery value of bonds of the defaulting intermediaries given by

RVpω, Sq �
maxtp1� χqAPpω, Sq �D, 0u

B
.

During the bankruptcy process, a fraction χ of the asset value of intermediaries is lost.
I assume that depositors are senior to other debt holders in bankruptcy; consequently,
bondholder recoveries are computed from the residual asset value net of deposits.

Households hold the residual equity tranche of every tree and perfectly diversify
across islands

Π pSq �
» » 8

zpω,Yq

�
zωY �

�
c� p1� δq � δp pSq

�
A
�
gpzq fpωqdzdω � p pSq .

The double integral is the residual payoff net of debt obligations, while p pSq is the market
value of debt carried into the next period.

Finally, the deposit rate rd pSqmay differ from the risk-free rate rf pSq to capture the fact
that changes to risk-free rates do not pass through one-for-one to deposits.12 Following
Elenev & Liu (2024), the relationship between the deposit rate and the risk-free rate is
given by

rdpSq �
�
r̄f �αD

	
�βD

�
rf pSq � r̄f

	
,

with αD ¥ 0 and βD P p0, 1s. The parameter αD captures the average spread between risk-
free and deposit rates, while βD captures the degree of deposit rate sensitivity to risk-free
rate deviations from its mean. When αD � 0 and βD � 1, the two rates are always equal.13

12While this paper does not directly study the role of interest rate risk in driving the banks’ franchise
value (Drechsler et al. 2017, Jiang et al. 2024, DeMarzo et al. 2024) it is important to account for the contri-
bution of deposits to banks’ cost of capital.

13In Appendix G.3, I provide a microfoundation for the deposit rate by allowing households to have
preferences for liquidity, D. Similar to my specification, deposits will trade below the risk-free rate since
households derive non-pecuniary benefits to hold them. The liquidity premium is decreasing in the amount
of deposits: when deposits are scarce the liquidity premium is higher. Intermediaries have market power
in deposit markets so they internalize the effect of their choice of deposit funding on the price they receive.
This generates an interior liability funding structure without the need of the constraint D1 ¤ D̄1.
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4.4 Government

Defaulting intermediaries are liquidated by the government. The government’s aggregate
fiscal cost is given by

TC pSq � π

»
ωPD

�
1�

maxtp1� χqAPpω, Sq �D, 0u
B

�
BdFpωq

�

»
ωPD

�
1�

mintp1� χqAPpω, Sq,Du
D

�
DdFpωq. (13)

The first integral captures the expected transfer to bondholders in default states, con-
ditional on a bailout being granted with probability π, i.e., the shortfall of bonds after
depositors are made whole; the second integral captures the expected deposit-insurance
payout that covers any shortfall of deposits relative to par.

The government is assumed to run a balanced budget so that

T pSq � κD1 � TC pSq . (14)

The fiscal cost of bailouts and deposit insurance is financed by lump-sum taxes T pSq to
households and fees κD1 to intermediaries.

4.5 Market Clearing and Equilibrium

After combining the budget constraints of all the agents in the economy and the govern-
ment, we obtain the aggregate resource constraint

Y � C�
ϕ1

2

� e

N

	2
N� χA

»
ωPD

Ppω, Sqfpωqdω� ηY

» » zpω,Yq

0
ωzgpzqfpωqdzdω. (15)

We define the Recursive Competitive Equilibrium as follows:

Definition 1. A Recursive Competitive Equilibrium for this economy is given by value func-
tions for households and intermediaries

 
VHpw, Sq, vpSq

(
, policy functions for households

tCpSq,B1pSqu, policy functions for the representative intermediary tA1pSq,D1pSq,B1pSq, epSqu,
prices

 
ppSq,qpA1,B1,D1; Sq,qdpSq

(
and taxes tTpSqu such that (i) intermediaries’ and house-

holds’ policies and value functions solve their decision problems; (ii) the government budget
constraint is satisfied; (iii) the market for assets clears,

³
a pω; SqdFpωq � A � 1; (iv) the market

for debt clears,
³
b pω; SqdFpωq � B; (v) the goods market clearing condition (15) holds; and (vi)

Γp�q is consistent with agents’ optimization and the exogenous aggregate state process.
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5 Equilibrium Characterization

In the environment presented in the previous section, credit spreads are driven by both
fundamental risk, Y and bailout expectations π. Ultimately, my goal is to use the model
as a measurement device to decompose credit spreads into their fundamental and bailout
components. To that end, in this section I first characterize the properties of the equi-
librium debt price and intermediary leverage. Having clarified its driving forces, I then
study how credit spreads respond to changes in fundamentals and bailout probabilities,
and conclude by outlining my proposed indirect inference approach leveraging on these
results.

5.1 Optimality Conditions

Before discussing the behavior of debt prices and the intermediaries’ optimal debt choice,
it is useful to first clarify how equity issuance frictions and the default decision shape
both the marginal value of net worth and how intermediaries value payoffs across states
of the world.

Letting ẽ � e{N denote new equity issued relative to existing net worth, the interme-
diary’s envelope condition can be written as

v pSq � ϕ0 � µpSq p1�ϕ0q ,

where v pSq is the (scaled) value function and ϕ0 is the target payout fraction. The first-
order condition with respect to equity issuance pins down µpSq, the shadow price at-
tached to a dollar of equity injections:

µpSq �
1

1�ϕ1 ẽ

Dividing the envelope condition through by µpSq gives a compact expression for the
"marginal value" of net worth:

ṽ
�
S1
�
�

v pS1q
µpSq

� p1�ϕ1ẽq

�
ϕ0 �

1�ϕ0

1�ϕ1ẽ1



, (16)

If ϕ1 � 0 (no issuance frictions), it follows that the marginal value reduces to 1. As
ϕ1 ¡ 0, issuing equity becomes costly: increasing ẽ raises the shadow value µpSq above
one, so that each additional dollar of net worth is valued more highly and endogenous
payout/injection policies hinge on the trade-off between internal financing (at marginal
value µpSq) and external issuance, which faces a marginal cost wedge ϕ1ẽ

1. First, it re-
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duces bank risk-taking ex ante, since banks hold more equity to save on issuance costs
in states of the world where losses are large, but not large enough to make bankruptcy
optimal. Second, conditional on being in a recession, the positive issuance costs make
bank recapitalization more costly and thus amplify intermediary frictions. The issuance
costs further increase the excess return banks require to hold risky assets.

Crucially, because default is endogenous, intermediaries value payoffs differently
across states as the likelihood of insolvency varies. Intermediaries optimally default
when ω   ω�pSq, which sets their net worth to zero:

Ppω�pSq, Sq �D�B � 0. (17)

Let FpSq � Fpω�pSqq denote the mass of defaulting intermediaries (the realized default
probability). This makes valuation explicitly state-contingent. If the intermediary sur-
vives (ω ¥ ω�pSq), it honors its liabilities and receives the full asset payoff; an extra dol-
lar of net worth next period is valued at the shadow marginal value ṽpS1q, which embeds
issuance frictions. If it defaults (ω   ω�pSq), equity is wiped out and the intermediary
incurs deadweight resolution costs χPpω�pSq, Sq; creditors recover RVpω�,1, S1q per unit
of face value unless a bailout occurs. With probability π1 a bailout prevents losses to
creditors, so default losses are borne only with probability 1� π1.

Debt Price. From the first-order condition of the households problem with respect to b1

we obtain

qpSq � ES

�
MpS1, Sq

!
1�FpS1q �FpS1q

�
π1 � p1� π1qRVpω�,1, Sq

�)�
(18)

The price qpSq equals the discounted expectation of the payoff that creditors receive
across survival and default states. The term 1�FpS1q captures full repayment when the
intermediary remains solvent. When default occurs with mass FpS1q, creditors are made
whole with probability π1 due to a bailout; with complementary probability 1� π1 there
is no bailout and creditors recover only RVpω�,1, Sq per unit of face value. The stochastic
discount factor MpS1, Sq prices these state-contingent payoffs.

The debt price qpSq declines when the likelihood of default FpS1q rises (for instance,
as leverage B increases and the default region expands) and when recoveries RVpω�,1, Sq
are lower. A higher bailout probability π1 increases qpSq and, by shifting probability mass
within default states from low-recovery outcomes to full repayment, reduces the sensi-
tivity of the price to default risk. The left panel of Figure 5 illustrates these effects: the
debt price schedule shifts up and flattens as π increases, especially when default risk is
elevated.
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Optimal Leverage. The choice of non-contingent debt is central to the analysis in that
it endogenously pins down the solvency risk of the financial intermediary as a function
of the underlying aggregate sources of risk and the intermediaries’ frictions, as shown in
Equation (17). When choosing the quantity of non-contingent debt B1, the intermediary
balances the cheapness of debt financing against the expected cost of default while taking
into account the tightness of the regulatory requirement. Formally, by combining the
first-order condition of the intermediary’s problem with respect to b1 with the one of the
household, we obtain14

ES

#
M

�
S1, S

��
p1�FpS1qq

�
1� ṽ

�
S1
��
�FpS1qπ1looooooooooooooooooooomooooooooooooooooooooon

marginal benefits
(valuation difference + bailout subsidy)

�+
� λ̃pSq

�ES

#
M

�
S1, S

��
1� π1

�
χPpω�pS1q, S1qfpω�pS1qq

dω�pS1q
dB1loooooooooooooooooooooooooomoooooooooooooooooooooooooon

marginal costs
(default)

+
. (19)

where λ̃pSq reflects the tightness of the intermediary’s leverage constraint (the shadow
cost of a dollar of debt). Intermediaries choose their capital structure by trading off the
benefits of borrowing against its costs. The benefit reflects a valuation difference: be-
cause intermediaries are effectively less patient than households, they prefer to front-
load payouts by issuing debt. This shows up in the survival states as a gain propor-
tional to p1�FpS1qqp1� ṽpS1qq. In default states, the expected bailout subsidy is captured
by FpS1qπ1. The cost is that more debt raises the likelihood of default, which destroys
value through expected shortfalls borne by creditors and deadweight losses, captured by
χPpω�pS1q, S1q and the sensitivity of default risk to leverage, BFpS1q{BB1.

A higher expected bailout probability π tilts this trade-off toward borrowing in two
ways. First, it lowers the marginal cost of debt by scaling down expected default losses
one-for-one via the factor p1 � π1q. Second, it increases the state-contingent subsidy in
default states, FpS1qπ1, effectively making debt cheaper ex ante. Together, these forces
reduce the weight on default costs and raise the net marginal benefit of issuing debt.
The right panel of Figure 5 depicts the decision rule for debt issuance B1 as a function
of the debt level B for three values of the bailout probability π (medium in black, low in
magenta, and high in cyan).15 In particular, the debt policy is more sensitive to the bailout
probability π when the intermediary is more levered (B is higher).

After having described the debt price and the intermediary’s choice of debt, the next

14See Appendix B for the full set of agents’ first-order conditions.
15These results (and the following ones) are based on the fully calibrated model, described in detail in

Section 6.
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Figure 5: Debt Price Schedule and Debt Policy Function
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Notes: policy functions evaluated at the ergodic means of D and d � 0. The left panel plots the debt price schedule qpSq as a function
of debt B for three values of bailout probability π (baseline in black, low in magenta, and high in cyan). The right panel plots the debt
policy B1 as a function of B for three value of fundamentals π (baseline in black, low π in magenta, and high π in cyan).

section analyzes the impact of bailout expectations and fundamentals on credit spreads by
taking into account the differential effects on intermediaries’ default probabilities through
B1.

5.2 Credit Spreads, Fundamentals and Bailout Expectations

The credit spread on one-period defaultable debt is given by:

CSpSqloomoon
Credit Spread

�
ES

�
MpS 1, Sq p1� π 1qFpS 1q

�
1� RVpω�,1, S 1q

��
ESrMpS 1, Sqslooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Expected Default Loss

(20)

Default losses embed three critical elements: the bailout probability π1 (government in-
tervention likelihood), default probability FpS1q, and asset recovery rate RVpω�,1, S1q per
unit, conditional on default.

The bailout probability π1 affects the credit spread through two distinct channels, as in
the following proposition:16

16The analysis abstracts from the effect of changes in the bailout probability operating via the stochastic
discount factor M pS1, Sq and the loan price ppSq. Moreover, intermediaries always choose to issue as much
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Proposition 1. The derivative of the credit spread with respect to the bailout probability is given
by:

BCS pSq
Bπ1

�
1

ES
�
MpS 1, Sq

�ES

#
M

�
S1, S

��
p1� π1q

BB1

Bπ1
1
B1

ΩpS1qlooooooooooomooooooooooon
Indirect Effect

�FpS1q
�
1� RVpω�,1, S1q

�loooooooooooooomoooooooooooooon
Direct Effect

�+
,

where the term ΩpS1q is defined as:

ΩpS1q � χPpω�pS1q, S1qfpω�pS1qq �
dω�pS1q

dB1
�FpS1qRVpω�,1, S1q ¥ 0.

The sign of the derivative is ambiguous since the direct and indirect effects have opposite signs.

Proof. The proof can be found in Appendix C.

The term �FpS1qr1 � RVpω�,1, S1qs reflects the direct reduction in expected default
losses when the bailout probability π1 increases. Higher π1 directly narrows credit spreads
because external intervention is anticipated. On the other hand, an increase in π1 widens
spreads, partially offsetting the direct effect through the indirect effect. The intuition is
that an increase in π1 incentivizes intermediaries to take on more debt, which in turn
increases the probability of default and the credit spread. The term p1 � π1qBB

1

Bπ1
1
B1Ω

1pS1q
captures how increased bailout probabilities π1 incentivize banks to adjust their debt
levels B1. If the semi-elasticity of leverage with respect to the bailout probability BB1

Bπ1
1
B1 ¡ 0

(i.e., banks take on more debt if π1 increases), the sign of this effect depends on Ω1. The
first subterm represents increased expected losses from extending the default threshold
ω�pS1q as debt rises and it is positive since dω�pS1q

dB1 ¡ 0. The second subterm reflects
dilution of recovery values across existing debt and it is always positive.

Next we discuss the effect of changes in fundamentals on credit spreads in the follow-
ing proposition:

Proposition 2. The derivative of the credit spread with respect to the fundamental risk is given
by:

BCS pSq
BY1

�
1

ES
�
MpS 1, Sq

�ES
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�
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�
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�
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BY1
1
B1

ΩpS1qloooooomoooooon
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�
�
p1� RVpω�,1, S 1qqfpω�pS1qq
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dY 1

�FpS1q
BRVpω�,1, S 1q
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Direct Effect

�+
.

deposits as they can up to the capacity constraint since the cost of issuing deposits is always lower then or
equal (in the case of no default or full bailout) to the cost of issuing bonds.
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The sign of the derivative is ambiguous since the direct and indirect effects have opposite signs.

Proof. The proof can be found in Appendix C.

The direct effect captures how Y1 shifts the default probability FpS1q and recovery
RVpω�,1, S1q. When fundamentals deteriorate, FpS1q increases and recoveries RVpω�,1, S1q
lower, raising expected default losses; the opposite holds when fundamentals improve.
The indirect effect reflects leverage adjustments through BB1

BY1 . When intermediaries in-
crease leverage as fundamentals improve—i.e., BB1

BY1 ¡ 0—the indirect effect raises the
spread and therefore moves in the opposite direction of the direct effect (which lowers the
spread as Y1 improves). If instead intermediaries delever as fundamentals improve—i.e.,
BB1

BY1   0—the indirect effect is negative and reinforces the direct channel. Consequently,
the overall sign is ambiguous in general. In particular, given ΩpS1q ¥ 0, the credit spread
is decreasing in fundamentals whenever the direct effect dominates the indirect effect.

Inferring the role of bailout expectations. To be consistent with the data definition in
(1), define the risk-neutral expectation as

E�
SrX

1s �
ES

�
MpS 1, SqX 1

�
ES

�
MpS 1, Sq

� .

Then the expression for the credit spread in (20) becomes
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�E�
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LGD�

,

where F�pSq is the model counterpart of the risk-neutral default probability.
The logic in Propositions 1 and 2 anticipates distinct joint movements of spreads and

default risk under bailout versus fundamental shocks. When π moves, the spread reacts
through a direct change in expected losses and an indirect response via the balance-sheet
choice B1. A lower π raises required spreads mechanically but, because intermediaries
optimally scale back debt, it also shifts down the default threshold ω�pS1q, reducing risk-
neutral default probabilities. By contrast, when Y worsens, both the default probability
and recoveries move adversely directly, making spreads and default risk rise together.
Deleveraging partially mitigates the higher default risk.

Figure 6 reports generalized impulse responses to two shocks: (i) a decline in π and
(ii) a fall in fundamentals Y obtained by a drop in Z such that the credit spread increases
by the same amount. We plot the one-period credit spread, the risk neutral default proba-
bility and leverage. Bailout expectations and fundamentals leave distinct joint footprints
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Figure 6: Impulse Responses to Drop in Bailout Probability and Drop in Fundamentals
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Notes: the graphs show the average path of the economy through a decrease in the bailout probability π (orange dashed) and a drop
in fundamentals Y (green dashed-dotted) such that the credit spread increases by the same amount. Both shocks start at t � 1. Each
line is the mean of 50,000 Monte-Carlo paths of length 20 years, all starting from the ergodic state at t � 0.

in spreads and default risk. A decline in π reduces expected public support, mechani-
cally raising required spreads; at the same time, intermediaries optimally delever, which
lowers the risk neutral default probability—so spreads rise while default risk falls. By
contrast, a fall in Y worsens cash flow prospects and recoveries, increasing both the risk
neutral default probability and required spreads; deleveraging partially mitigates, but
does not overturn, the higher default risk—so both spreads and default rise. This contrast
in co-movements—spread up with default down for π shocks versus spread up with de-
fault up for Y shocks—allows us to infer whether higher (lower) credit spreads are driven
by lower (higher) bailout expectations or by deteriorating (improving) fundamentals. By
contrast, an increase in credit spreads accompanied by a declining default probability
indicates that bailout expectations are the underlying source.

A natural concern is that the post-2010 tightening of capital and liquidity regulation
could mechanically force intermediaries to delever, lowering risk-neutral default prob-
abilities, thereby confounding movements attributed to bailout expectations. In theory,
changes in regulation do not pose a threat to the identification strategy proposed. The rea-
son is that, even though tightnening regulation could reduce risk-neutral default proba-
bilities, it would then by that channel compress spreads and not raise them, which is what
is observed in the data. However, for this reason, it is crucial to discipline the trajectory of
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regulatory tightness after 2010 to avoid overstating (or understating) the bailout compo-
nent. To do so, I provide a cross-equation restriction that separates regulatory stringency
from bailout expectations by exploiting their opposite loadings on CDS spreads relative
to the downside component of the risk-neutral equity variance (conditional on funda-
mentals) as described in Appendix A.6. In this way, I ensure that any remaining variation
is not mechanically attributed to regulation and does not artificially inflate (or deflate) the
estimated bailout contribution.

6 Quantitative Analysis

The model is calibrated to U.S. bank-level data at the annual frequency from 2000 to
2020. For consistency, the calibration considers the same sample of banks from which
risk-neutral default probabilities and expected losses are constructed in Section 3. Table 2
lists all parameters and organizes them into four sets: fundamental risk, preferences, fi-
nancial intermediaries balance sheet, and bailout expectations. For each parameter we
report its value and the empirical target or source used to discipline it. Parameters gov-
erned by well-measured objects or established in the literature are fixed to those values;
parameters that can be identified without solving the full model are chosen to match
reduced-form moments; the remaining parameters are estimated to match moments that
require the full model solution using the method of simulated moments. Appendix E
provides detailed information on the data sources and variables’ definitions.

The presence of large shocks, substantial risk and occasionally binding constraints,
make prices and quantities highly nonlinear functions of the state space. Hence, the
model is solved globally using a transition function iteration algorithm adapted from
Elenev et al. (2021) and described in Appendix D. To generate the model moments, I run
80 independent simulations, each with 10,000 periods following a 500 period "burn-in",
and report bootstrapped statistics. The model-generated values, unless otherwise speci-
fied, are computed from a sample conditional on no disaster realization.

Fundamental risk. It is important that the model captures the dynamics of asset risk
realistically since these dynamics shape both default probabilities and the pricing of bank
liabilities. Risk is not constant but rises disproportionately in downturns, reflecting the
concavity of banks’ underlying claims and the endogenous amplification of volatility
when fundamentals weaken (Nagel & Purnanandam 2020). Models that miss this fea-
ture understate default risk in normal times and do not capture the sensitivity of eq-
uity returns to negative shocks. To discipline this dimension, I calibrate the parameters
governing fundamental risk to match moments of the option-implied Bank of America
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Table 2: Model parameters

Parameter Value Targets

Panel A: Fundamental risk
πd 0.036 Disaster onsets frequency
πs 0.212 Disaster spell duration
η 0.658 Bond and loan recovery losses (Elenev et al. 2021)
δ 0.937 Corporate debt duration (Elenev et al. 2021)
ζ 0.15 Simulated Method of Moments
ρ 0.90 Simulated Method of Moments
σ 0.05 Simulated Method of Moments
σz 0.70 Simulated Method of Moments
σω 0.11 Simulated Method of Moments

Panel B: Preferences
β 0.987 Simulated Method of Moments
ν 2 Simulated Method of Moments
γ 7 Simulated Method of Moments

Panel C: Financial intermediaries
ξ 0.92 Basel 8% Capital Requirement
κ 0.001 72 Deposit insurance fee (Begenau & Landvoigt 2022)
αD 0.005 Deposit spread target (Drechsler et al. 2017)
βD 0.34 Deposit rate sensitivity (Elenev & Liu 2024)
χ 0.332 Bankruptcy cost (Bennett et al. 2015)
ζD �0.4 Correlation of insured deposits and output
ϕ0 0.02 Dividend payouts by book equity
ϕ1 5 Simulated Method of Moments
D̄ 0.4 Simulated Method of Moments
n0 0.22 Simulated Method of Moments

Panel D: Bailout expectations
π̄ 0.87 Simulated Method of Moments
ρπ 0.7 Simulated Method of Moments
σπ 0.6 Simulated Method of Moments

33



investment-grade corporate-bond spreads, which serve as a proxy for the credit-risk fac-
tor in bank portfolios (Begenau et al. 2015). In particular, I average the spreads across
their rating classes from AAA to BBB. I define a disaster as a period in which the spread
is 2.5 standard deviations above its mean. The time series of the average spread is shown
in Figure E.1 in Appendix E.

Aggregate productivity follows a log-AR(1) process,

lnZ1 � ρ lnZ� p1� ρqµ� σε, (21)

where ε � Np0, 1q, µ is the long-run mean of lnZt (normalised to unity), ρ P p0, 1q governs
persistence, and σ ¡ 0 controls aggregate volatility. The persistence parameter, ρ, is set to
match the spread’s first-order autocorrelation of 0.47. The innovation volatility, σ, targets
the unconditional standard deviation of the spread of 0.69%.

To guarantee positivity of (4), the two idiosyncratic shocks are modelled as log-normal

ln z � σzε, lnω � σωη, (22)

with ε,η i.i.d.
� Np0, 1q. The parameters σz and σω pin down the cross-sectional dispersion

of tree and island shocks, respectively. The standard deviation of tree specific shocks σz is
set to match the average spread over the sample period which corresponds to 1.37%. We
set the standard deviation of the island risk, σω, to target the median risk-neutral default
probability of the banking sector as estimated from equity options in Section 3 and equal
to 2.42%.

The binary disaster indicator evolves according to the Markov transition matrix

Pd �

�
1� πd πd

1� πs πs

�
, (23)

where πd is the probability of a disaster next period conditional on a normal state this
period, and πs is the probability of the disaster state next period if there is a disaster
in the current period. The disaster-arrival probability, πd, and the conditional survival
probability, πs, are selected to replicate, respectively, the empirical frequency of disaster
onsets of 3.6% and the average length of disaster spells of 21.2% as calculated from the
data. The disaster-severity coefficient, ζ, is chosen so that the model reproduces the mean
spread observed during disaster episodes of 4.8%.

The loss-severity parameter, η � 0.6996, is calibrated to the bond and loan recovery
losses documented by Elenev et al. (2021) of 52%. Similarly I set δ � 0.937 as in Elenev
et al. (2021) to match the observed duration of corporate debt which corresponds to 6.84
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years.

Preferences. The time discount factor affects the mean of the short-term interest rate.
The subjective discount factor is set to β � 0.987 to match the observed average short-
term interest rate measured by the 3-month Treasury bill rate of 1.56% and the inter-
temporal elasticity of substitution is set to ν � 2 to match its volatility of 1.78%. The risk
aversion parameter is set to γ � 7 to match the financial-sector ratio of the credit risk
premium to the CDS rate reported by Berndt et al. (2018), which is equal to 0.39 over their
sample period (2002–2015).17

Financial intermediaries. The intermediary borrowing constraint parameter ξ can be
interpreted as a minimum regulatory equity capital requirement. This parameter is set to
ξ � 0.92 in the baseline calibration, or a 8% equity capital requirement, conforming with
the Basel limits. The deposit insurance fee is set to κ � 0.172% following Begenau & Land-
voigt (2022) and the convenience yield on deposits αD is set to match deposit spreads of
0.32% in the data (Drechsler et al. 2017). The deposit rate sensitivity is set to βD � 0.34 fol-
lowing Elenev & Liu (2024). The parameter χ � 0.332 is set following Bennett et al. (2015).
The equity injection parameter n0 is set to 0.22 to match the observed average market to
book value ratio of 1.4%. To determine the dividend target ϕ0 of banks, time series of
dividends, share repurchases, equity issuances, and book equity are constructed. Over
the sample period, banks paid out around 2% of their book equity per year as dividends
and share repurchases, which is the value I set for ϕ0. The marginal equity issuance cost
for intermediaries, ϕ1 � 5, is calibrated using the same data. With this parameter, I target
the median equity issuance ratio of the financial sector, defined as equity issuances di-
vided by book equity. A higher equity issuance cost makes issuing external equity more
expensive, and lowers the equity issuance ratio. Since banks issue equity on average, the
equity issuance rate is 0.38% in the data. The insured deposit limit D̄ mean determines
the insured deposit share of liabilities. The model generates a value of 50% versus the
data counterpart of 64%. Finally, the correlation of insured deposits and output is set to
ζD � �0.4 to match the observed correlation in the data.

17Berndt et al. (2018) construct the credit risk premium as Prem � CDS� ExpL, where ExpL is the ex-
pected default loss computed from Moody’s Analytics EDF default probabilities (using a term-structure
fit across 1y/5y EDFs and longer refined PDs) together with Markit recovery assumptions; their Table III
presents statistics for five-year CDS contracts, whereas my model focuses on one-year credit spreads, so
their statistics represent an upper bound for my model’s implied one-year ratio.
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Bailout expectations. The bailout probability follows an AR(1) process18

π̃1 � p1� ρπqπ̄� ρππ̃� σπεπ, επ � Np0, 1q.

The parameters π̄, ρπ, and σπ are chosen to match, respectively, the median CDS spread
of 0.37%, its first-order autocorrelation of 0.58, and its standard deviation of 0.40% in the
data.

6.1 Model Fit

Table 3 collects the empirical targets and the corresponding model-implied moments used
in the calibration. The model captures time-varying risk premia across equity and debt
while tracking default risk. On the asset side, BofA IG option-adjusted bond spreads av-
erage 1.15% in the model against 1.37% in the data, with persistence and volatility in the
right range. In disaster states d � 1, spreads reach 4.10% in the model versus 4.77% in
the data. On the liabilities side, CDS premia average 0.38% in the model and 0.37% in the
data, with slightly less persistence but comparable volatility. In equity markets, the model
reproduces a large and clearly time-varying risk-neutral variance of intermediaries’ eq-
uity returns, 0.054 in the model versus 0.08 in the data, rising in stress. Risk-neutral
default probabilities average 3.24% in the model against 2.42% in the data and move with
spreads, helping sustain observed credit premia while preserving the shape of the empir-
ical distribution.

Figure 7 complements these comparisons. The left panel shows that one–year credit
spreads are right–skewed in both the data and the model, with similar mass over low-to-
moderate spreads and thinner model-implied tails at the highest realizations. The right
panel documents that risk–neutral default probabilities concentrate near low values in
both series; the model shifts the mean upward modestly—consistent with Table 3—while
preserving the overall shape of the empirical distribution. By jointly matching spreads on
both the asset and liability sides, the model effectively pins down equity risk and, through
that mapping, closely replicates the distribution of risk–neutral default probabilities.

18Bailout expectations can be read as a political and institutional process, rather than a mechanical re-
sponse to contemporaneous fundamentals. For identification, bailout expectations are kept exogenous and
orthogonal to real variables to separate policy from fundamentals. If bailout probability endogenously rises
in stress (when intermediaries’ net worth falls or their realized default probability increases), it compresses
spreads and offsets fundamentals. Treating bailout expectations as exogenous therefore understates, not
overstates, the bailout component, making my estimate a conservative lower bound.
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Table 3: Empirical targets: data vs. model

Targets Data Model

BofA IG Bond Spread 0.0137 0.0115
BofA IG Bond Spread in d � 1 0.0477 0.0410
AR(1) of BofA IG Bond Spread 0.47 0.53
BofA IG Bond Spread volatility 0.0067 0.0091
Intermediaries risk neutral default probability 0.0242 0.0324
Intermediaries market to book value 1.4 1.2
Intermediaries equity issuance rate 0.0038 0.0050
Insured deposits share of liabilities 0.64 0.60
Risk-free rate 0.0156 0.0126
Risk-free rate volatility 0.0178 0.0179
Credit Risk Premium to CDS rate 0.39 0.34
CDS rate 0.0037 0.0038
AR(1) of CDS rate 0.58 0.49
CDS rate volatility 0.0040 0.0034

Figure 7: Distributions of Credit Spreads and Default Probabilities
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Notes: histograms for model-simulated and empirical distributions, 2000–2020. The left panel plots one-year credit spreads (data
described in Section 3 and the simulated sample used for Table 3). The right panel plots risk-neutral default probabilities based on the
same data and simulation.
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7 Decomposing Credit Spreads

This section presents the main experiment of the paper, namely to measure the impor-
tance of bailout expectations before, during and after the Great Financial Crisis. In partic-
ular, the model is combined with annual data over 2004–2015 to recover the latent bailout
probability process and to decompose observed credit spreads.

The model is used to generate the following nonlinear state-space system

Yt � g
�
St

�
�ηt,

St � f
�
St�1, εt

�
,

(24)

where
St �

�
Lt,Wt,πt, Zt, dt

�J, εt �
�
επt , εZt , εdt

�J,

and the vector Yt collects the two observable variables:

Yt �
�
CSt,365, F�

t,365
�J,

namely the credit spread differential CSt,365 and the risk neutral default probability F�
t,365

(both constructed in Section 3). ηt represents the measurement errors vector. The map-
ping gp�q delivers the model-implied one-year credit spread g1pStq and risk-neutral de-
fault probability g2pStq, respectively.

Given the model’s nonlinear mapping gp�q, the latent state path tStu
T
t�1 is estimated

using a particle filter algorithm (see Appendix F for details). The filter pins down the
entire sequence of shocks tεtu—including the bailout probability shock επt —that is con-
sistent with observed spreads and default probabilities.

Empirically, credit spreads are strictly positive and right-skewed, whereas default
probabilities lie on the open unit interval. To respect these distributional features, the
measurement errors are modeled as log-normal and beta random variables rather than
Gaussian noise:

CSt,365 � g1pStq exppηCSt q, ηCSt � N
�
�1

2σ
2
CS, σ2

CS

�
,

F�
t,365 � g2pStq � η

Q
t , η

Q
t � Beta

�
αt,βt

�
�E

�
Betapαt,βtq

�
,

where the beta parameters pαt,βtq are calibrated each period to match g2pStq and
a variance set equal to 0.01 pσ2

�
F�
t,365

�
. The log-variance σ2

CS is fixed analogously at
0.01 pσ2

�
CSt,365

�
. Independent log-normal and beta likelihoods are thus used within the

particle filter to update the state vector in each year.
To account for the tightening of regulation after 2010, I impose a deterministic policy
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break at the start of 2010 and evaluate the model’s policy functions under a stricter cap-
ital requirement from that date onward. Concretely, for t   2010 the likelihood and the
model-implied observables gpStq are computed under the baseline leverage cap ξ � 0.92,
which corresponds to an 8% minimum equity capital requirement. Starting in 2010, the
same objects are instead evaluated under a tighter requirement that raises the minimum
equity share to 10.5%. This break only changes the policy mapping used by the parti-
cle filter (and thus the measurement density), leaving the measurement-error specifica-
tion unchanged. The magnitude of the post-2010 tightening is pinned down using the
increase in the downside slope (elasticity) of the spread–downside-variance relation of
0.20 estimated in Section A.6 from pre-2008 to post-2010.19 Economically, this identifi-
cation exploits that, holding fundamentals fixed, a decline in expected bailout support
raises CDS spreads while lowering the downside risk-neutral equity variance, whereas
a tightening of capital requirements compresses leverage and reduces both spreads and
downside variance. Consequently, an upward break in the spread–variance correlation
is informative about stronger regulation rather than weaker bailout protection. Hence, I
calibrate post-2010 ξ so that the model reproduces this increase in the downside slope,
which implies a 2.5 percentage-point increase in the equity capital requirement (from 8%
to 10.5%)—equivalently, a decrease in ξ by 0.025.20

Figure 8 compares the model-implied average path for one-year credit spreads and
risk-neutral default probabilities with their data counterparts. The model captures well
the dynamics in both series, including the run-up into the crisis and the subsequent de-
cline after the 2010 increase in capital requirements. It also matches the relative timing
of peaks and troughs and the co-movement between spreads and default risk. By con-
trast, the model overstate default probabilities before and during the crisis. Finally, while
default probabilities had returned to their 2007 levels by 2012, credit spreads remained
permanently higher than pre-crisis levels.

The right panel of Figure 9 reports the recovered bailout probability path π in black
dashed. The inferred bailout probability is elevated before the crisis and exhibits two dis-

19Section A.6 develops an identification that disentangles regulation from bailout expectations by exploit-
ing that, holding fundamentals fixed, regulation moves CDS spreads and downside risk-neutral variance
in the same direction, whereas lower bailout protection moves them in opposite directions. I construct
model-free upside and downside tail variances from option prices, residualize both on bank and date fixed
effects and bank-specific VIX slopes (to control for asymmetric changes in tails due to fundamental shocks,
i.e. downward jumps), and use the projection of the downside tail on the upside tail to build subsample-
specific orthogonalized shifters (pre-2008 and post-2010). I then estimate an interacted 2SLS of log CDS
spreads on the log tail variances, instrumenting each interacted tail regressor with its corresponding or-
thogonalized shifter and clustering by bank and date. The post-2010 downside slope is larger than pre-2008
and the spread–downside slope increases by about 0.20; by the monotonic mapping in Proposition 3, this
identifies tighter capital regulation rather than lower bailout expectations.

20When matching the post-2010 increase in the spread–downside-variance slope, I first net out the com-
ponent driven by fundamentals from both series so that the resulting change isolates the impact of bailout
expectations and tighter capital regulation. More details can be found in Appendix F.
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Figure 8: The Dynamics of Credit Spreads and Default Probabilities
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(b) Default Probabilities

Notes: the left panel plots one-year credit spread, model-implied (black dashed) versus data (cyan solid). The right panel plots one-
year bank default probability, model-implied (black dashed) versus data (cyan solid). The red vertical line in 2010 represents the
increase in capital requirements implied by the model from 8% to 10.5%.

Figure 9: Counterfactual Credit Spreads
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Notes: the left panel plots model spread (black dashed) and the counterfactual with high bailout probability (orange dotted). The
orange shaded are represents the bailout component and it is the difference between model-implied and counterfactual spread with
π � πH. The right panel plots recovered bailout probability π from the state-space filter (black dashed) and the counterfactual
bailout probability (orange dotted).
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tinct drops. A first drop occurs in late 2008 around the Lehman failure—partly tempered
by the enactment of the Paulson Plan (TARP)— and a second, more persistent decline be-
gins in 2009 following the 2009Q3 announcement of Dodd–Frank and its July 2010 enact-
ment; the probability falls from about 94% to 75% by 2009 and remains subdued through
2013. It then recovers only gradually, to a level below its pre-crisis level. This is consis-
tent with regulatory credibility being not long-lasting: although the single-point-of-entry
(SPOE) resolution strategy was articulated in 2013, uncertainty about implementation
persisted, and only in 2024 did the FDIC and the Federal Reserve issue final joint guid-
ance for large banks’ resolution plans. Overall, this pattern is consistent with the findings
in Berndt et al. (2022).

With the recovered latent state path in hand, I now measure the contribution of the
bailout probability to the credit spreads. To do so, the filtered states are fed to the model’s
policy functions, with the exception that π is set to its pre-crisis level which corresponds
to the highest state πH for all t in the sample. The left panel of Figure 9 reports the counter-
factual spread in orange dotted together with the model-implied spread in black dashed.
The orange shaded are represents the difference between the filtered credit spread and
the counterfactual one and nets out the impact of bailout expectations. I define this dif-
ference as the bailout component of credit spreads. The right panel of Figure 9 reports the
counterfactual bailout probability in orange dotted. The counterfactual spread rose dur-
ing the GFC by less than half of the model-implied spread and returned to its pre-crisis
level by 2012.

But how different would the recovered bailout component be relative to a naive mea-
sure which follows the empirical apprach described in Section 2? Figure 10 report the log
difference between the model-implied spread and the counterfactual spread with π � πH

(black dashed line) and the naive measure which subtracts the log of the risk neutral de-
fault probability from the log of the model-implied spread (green dashed-dotted). The
latter mechanically attributes to bailout expectations everything that is not captured by
default risk. Both measures are normalized at zero in 2007. After the crisis, the model-
based measure remains above zero, indicating that bailout probabilities do not return to
their pre-crisis level. By contrast, the naive measure overstates the bailout contribution
after 2010. When π falls, banks delever and default probabilities drop; as a result, the
measured F� stays roughly at its pre-crisis level even though fundamentals have wors-
ened. A naive measure interprets this stability of F� as “no change in fundamentals”
and assigns the post-2010 increase in spreads to bailout expectations. In reality, lower
leverage is masking weaker fundamentals; ignoring the leverage–default link therefore
overestimates the bailout component in post-crisis spreads.

Including observed default probabilities in the state-space filter is crucial to discipline
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Figure 10: Model-Implied Bailout Component vs. Naive Measure
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Notes: black dashed: log CSt � log CStpπ � πHq, the model-implied bailout component computed as the log difference between
the model-implied spread and the counterfactual spread that fixes bailout probability at its pre-crisis level πH. Green dashed-dotted:
log CSt � log F�

t,T , a naive measure obtained by subtracting the log risk–neutral default probability from the log spread. Both series
are normalized to zero in 2007.

how much of spreads is attributed to bailout beliefs versus failure risk. Economically,
default probabilities revert toward their pre-crisis levels by 2010–2011, while banks’ CDS
spreads remain elevated for several years. If the default-rate series is omitted, the fil-
ter can rationalize high spreads by keeping model failure probabilities persistently high,
thereby shrinking the portion of spreads assigned to bailout expectations. Consistent
with this mechanism, the right panel of Figure 11 shows that, when default probabilities
are excluded from the filter, the model-implied default probability stays too high relative
to the data. As a result, the estimated bailout component is markedly smaller in that
specification: it explains 59% of the spread increase in 2009–2010 and only 20% in 2010–
2015, compared with 67% and 43%, respectively, in the baseline with default probabilities
included.

A behavioural story can also explain the wider credit spreads after the GFC. Before
the crisis, many creditors did not truly believe that banks could fail (Gennaioli & Shleifer
2018). When Lehman Brothers collapsed and several other giants nearly followed, cred-
itors suddenly recognised a failure risk that had been present all along but badly under-
estimated. The jump in spreads would then reflect a higher perceived chance of insol-
vency, not a change in expected bailout support. However, the persistence of those wider
spreads implies that the post-Lehman shift in perceived failure risk lasted for years and
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Figure 11: The Information Content of Default Probabilities
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Notes: the left panel plots the bailout component in the baseline economy (orange) and in the case in which default probabilities
are excluded from the filter (green) as a share of the respective model spreads over 2008–2010 and 2010–2015 (percent). The bailout
component is the difference between the model-implied spread and the counterfactual spread with bailout fixed at its pre-crisis level.
The right panel plots model default probability when the default probabilities are excluded from the filter (black dashed) versus the
data counterpart (cyan solid).

this was not the case, consistent with the behaviour of default probabilities presented in
the right panels of Figure 8 and Figure 11. Hence, the evidence is inconsistent with a
potential behavioral explanation of changes in intermediaries’ debt funding costs. More
broadly, standard intermediary asset-pricing models (He & Krishnamurthy 2013, Brun-
nermeier & Sannikov 2014) struggle to reproduce boom–bust episodes in credit valua-
tions without invoking behavioural mechanisms; behavioural frictions generate such dy-
namics via shifts in beliefs (Maxted 2024, Krishnamurthy & Li 2025). By contrast, in my
framework the evolution of bailout expectations helps reproduce the boom–bust pattern
while keeping the dynamics of default risk consistent with the data.21

Table 4 report the percentage change in credit spreads and leverage post-2010 relative
to their pre-crisis average in the first column with the relative contributions of bailout
probabilities and regulation in the second and third column. Relative to the pre-2008
benchmark, the average unsecured spread paid after 2010 rises by 34 basis points in the
baseline model, yet by only 6 basis points when the high pre-crisis bailout probability (πH)
is kept in place. The difference of roughly 28 basis points—almost three quarters of the

21Relatedly, Krishnamurthy & Li (2025) among others argue that unusually low credit spreads can pre-
cede crises when they reflect optimistic beliefs rather than low risk. In my setting, low spreads forecast
distress only when they arise from elevated bailout expectations that spur risk taking and raise default ex
post.
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observed increase—can therefore be attributed directly to the reassessment of govern-
ment support. Put differently, unsecured debt spreads would have been roughly four
times lower had investors continued to believe in large-scale bailouts. Tighter capital re-
quirements after 2010 contributed to the reduction in leverage and insolvency risk in the
banking system, helping keep spreads about 12 basis points lower. Thus, even if tighter
regulation lowered observed default probabilities, that force would push spreads down,
not up. The persistence of elevated spreads alongside lower default probabilities there-
fore cannot be explained by regulation alone; if anything, it reinforces the inference of
weaker bailout protection and raises the estimated bailout component of spreads.

8 Reassessing Post-2010 Reforms

Table 4: The Impact of Lower Bailout Expectations and Tighter Regulation

Baseline π contribution ξ contribution

Credit spread (bp) 34.3 27.9 �11.7
Leverage (%) �2.99 �1.49 �1.20
(Adjusted) Risk-free rate (bp) 43.6 13.4 26.6
Risk premium (bp) 64.4 32.4 26.3
Loan rate (bp) 50.9 39.8 15.6

Notes: entries report changes in post-2010 averages versus pre-2008 averages. Spreads and rates are in basis points; leverage is in
percentage points. The first column shows changes for the baseline economy. The second and third columns show the contributions
of lower bailout expectations (π) and tighter capital requirements (ξ), respectively, to these changes. Positive values indicate increases
relative to pre-2008.

As shown in the previous section, a decline in bailout expectations and tighter capital
requirements raised intermediaries’ funding costs and compressed leverage. I now ex-
amine how the changes in the cost and composition of funding transmit to the pricing of
risk on the asset side of intermediaries’ balance sheets.

A growing empirical literature documents that, after the GFC and the subsequent
wave of regulatory tightening, banks retrenched from risky asset markets and curtailed
balance-sheet intermediation of complex credit products (Bao et al. 2018, Allahrakha et al.
2019, Kim et al. 2018). This pullback was accompanied by a migration of risk toward
nonbank financial intermediaries and a secular shift away from on-balance-sheet lend-
ing by banks as documented by Irani et al. (2021), Buchak et al. (2018, 2024) and banks’
increased allocations to safer segments such as AAA-rated securitization tranches and
longer-maturity government securities. At the same time, Baker & Wurgler (2015), Plosser
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& Santos (2024) among others document that stricter capital regulation lead to a tighten-
ing of lending stadards and higher cost of bank credit. While the literature typically ex-
plained these trends solely through tighter regulation, in this section I evaluate the role of
higher funding costs induced by lower bailout expectations. I first characterize the inter-
mediary stochastic discount factor and the asset demand condition, and then I use them
to quantify the implications for expected returns, risk premia and the cost of credit.

The intermediary’s choice of risky asset holdings a1 determines the expected returns
and so the intermediary’s willingness to be exposed to fundamental aggregate risk. For-
mally, from the first-order condition of the intermediary’s problem with respect to a1, we
obtain

ppSq �
BqpSq
BA1

B1 � λpSqξppSq � EStM
IpS1, SqPpω�,1, S1qu, (25)

where MIpS1, Sq is the intermediary stochastic discount factor defined as

MIpS1, Sq �MpS1, SqṽpS1qp1�FpS1qq. (26)

On the left, ppSq is the price paid today for the risky asset. The term BqpSq
BA1 B1 captures

that the intermediary internalizes how additional asset exposure affects both default like-
lihood and expected recovery in default states. Because BqpSq

BA1 ¡ 0, this component raises
the asset’s price. The term λpSq ξppSq represents the marginal value of relaxing the lever-
age constraint (9). On the right, the expression is the expected discounted payoff using
the intermediary SDF.

In general, variation in the cost and composition of funding, by altering the interme-
diary’s net worth, will influence the behavior of expected returns. In order to understand
that, we can rearrange Equation (25) as follows:

ES
�
RApS 1, Sq

�
� RIpSqp1� λpSq ξ�ϕpSqqlooooooooooooooomooooooooooooooon

Regulation/Default Adjusted Risk-Free Rate

� covS

�
�

MIpS 1, Sq
ESrMIpS 1, Sqs

, RApS 1, Sq



looooooooooooooooooooooomooooooooooooooooooooooon
Risk Premium

(27)
where I define the (shadow) risk-free gross rate implied by the intermediary SDF as
RIpSq � 1{ESrM

IpS1, Sqs, ϕpSq � 1
ppSq

BqpSq
BA1 B

1 and RApS1, Sq � xPpω�,1,S1q
ppSq . Equation (27)

shows that the expected return on the risky asset is the sum of two components: the
risk-free rate adjusted for intermediary constraints and the risk premium. Interpreting
increases in each component clarifies how portfolios would adjust. A higher adjusted
risk-free rate raises the common hurdle rate for all assets, their average cost of financ-
ing. This effect bites more for assets with small excess returns and hence it would push
intermediaries to scale down the exposure to safer, low-spread markets first. By con-
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trast, a higher risk premium—reflecting a stronger tilt of the intermediary SDF toward
bad states—raises the compensation required for bearing risk in downturns. In this case,
intermediaries would shift away first from asset exposures that are highly cyclical or lose
value in recessions.

Changes in regulation and in perceived bailout probabilities change expected returns
by altering funding costs and the composition of intermediaries’ liabilities (debt vs. eq-
uity). While both tighter capital requirements and lower expected bailouts reduce effec-
tive leverage, they do so through different channels. Tighter capital requirements (lower
effective ξ) force intermediaries to hold more equity and so they increase their average
cost of capital since equity is more expensive than debt. This raises the adjusted risk-free
rate. Moreover, anticipation that the constraint may bind in the future raises required
returns today by increasing risk premia (Aiyagari & Gertler 1999, Bocola 2016). When the
constraint binds (higher λpSq), intermediaries need to delever to meet capital ratios, de-
pressing prices and lowering ex–post returns precisely when the marginal value of inter-
mediary equity ṽpS1q is high. This, in turn, increases their required compensation for hold-
ing risky assets. Lower perceived bailout probabilities remove state-contingent transfers
to creditors in bad states. This raises the cost of debt funding directly and pushes interme-
diaries to hold more equity, raising the adjusted risk-free rate. Lower π increases the sen-
sitivity of funding costs to default risk: with less expected support, required debt spreads
load more on default probabilities rather than on recovery values. Because default proba-
bilities spike in downturns, funding costs rise most in bad states—precisely when issuing
equity is most costly—shrinking intermediaries’ net worth and raising ṽpS1q. As a re-
sult, the intermediary SDF is more tilted toward bad states of the world and thus the risk
premium is higher.

The last three rows of Table 4 report the contribution of the post-crisis fall in the per-
ceived bailout probability and tighter capital requirements to the intermediary adjusted
risk-free rate, the risk premium, and lending rates.

Changes in funding costs show up as a higher intermediary-adjusted risk-free rate and
a higher risk premium in expected returns. In the baseline, expected excess returns rise by
about 107 basis points relative to the pre-2008 benchmark, with roughly 43 basis points
contributed by the adjusted risk-free rate and 64 basis points by the risk premium. In
terms of contributions, lower bailout expectations (column πH) contributes about 13 basis
points to the increase in the adjusted risk-free rate, while the tightening of capital require-
ments (column ξ) contributes about 27 basis points. On the risk-premium side, lower
bailout probabilities contribute about 32 basis points to the increase in the risk premium
(roughly half of the total), while tighter capital requirements contribute about 26 basis
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points.22

The behavior of expected returns is consistent with a sluggish recovery in lending
standards post-2010. In the baseline, the gross lending rate, calculated as δ ppSq

ppSq�δ�1�c
, is

around 50 basis point below its pre-2008 average with more then half of the drop ac-
counted for by lower bailout expectations. Both lower bailout probabilities and tighter
capital requirements increase intermediaries’ reliance on expensive equity, making banks’
recapitalization more costly, slowing down the recovery in their net worth and inducing
a persistent compression in lending rates.23 Comparing the baseline to the ξ counter-
factual suggests that, once lower bailout expectations already induce intermediaries to
delever endogenously, the post-2010 tightening of regulation pushed funding further to-
ward costly equity and increased the cost of credit even more.

Taken together, these findings show that the post-2010 repricing of government guar-
antees played a major role in driving higher risk premia—prompting a reallocation away
from very risky assets toward safer ones—and increasing the cost of credit to firms and
households. More broadly, my results highlight a crucial identification issue when study-
ing the impact of regulation on risk premia, bank credit supply, and lending rates in
markets where intermediaries invest. If bailout expectations are not explicitly accounted
for, one would risk over-attributing these effects to regulatory changes alone. In reality,
perceived state-contingent promises and formal rules (e.g., capital requirements) operate
as a joint system that co-determines funding costs, capital structure, and ultimately the
pricing of risks on intermediaries’ assets.

9 Conclusion

This paper provides a model-based decomposition of bank credit spreads into fundamen-
tal, regulatory, and bailout components. Quantitatively, diminished bailout expectations
account for roughly 28 basis points of the post-2010 34-basis-point increase in unsecured
funding costs, with the remainder due to fundamentals (18 basis points) and partly offset
by tighter regulation, which lowered spreads by about 12 basis points.

Lower post-crisis declines in bailout expectations and tighter regulation jointly raised
the compensation banks require to hold risk and increased the cost of credit to the real
economy. Quantitatively, movements in risk premia account for about 60% of the post-
crisis increase in expected returns, with roughly half of that rise driven by lower bailout

22Because post-crisis capital regulation raises requirements more for riskier assets through higher risk
weights, the aggregate decomposition likely understates the effect of tighter regulation on the cost of capital
and risk premia—especially for high-risk exposures.

23By jointly lowering perceived bailout probabilities and tightening capital requirements, the model also
rationalizes the persistently higher option-adjusted bond spread post-2010; see Appendix E.
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expectations. Lending rates increased by around 50 basis points over the same period.
This repricing of government guarantees emerges as an important driver of banks’ post-
2010 retreat from tail-exposed asset markets and the tightening of lending conditions,
emphasizing that failing to account for bailout expectations would bias upward the esti-
mated impact of regulation.

These findings have important policy implications. First, my paper highlights the im-
portance of credible commitment mechanisms in financial regulation and suggests that
the effectiveness of capital requirements may depend crucially on the broader policy en-
vironment, including expectations about government intervention in times of stress. If
regulators could commit to not providing bailouts, then the optimal capital requirement
may be lower than currently warranted. The mere expectation of government support
could reduce banks’ risk-taking incentives, even without actual bailouts occurring, but at
potentially lower economic costs than tighter regulation.24 Second, my analysis suggests
it may be useful to extend capital regulation approaches that rely on credit spreads as a
gauge of financial health and a trigger of regulatory actions (e.g., countercyclical capital
buffers). The decomposition reveals that credit spreads reflect not only fundamental risk
but also expectations about government intervention. Policymakers using credit spreads
as early warning indicators of financial crisis and to initiate regulatory measures should
account for bailout expectations to avoid misinterpreting changes in spreads as purely
fundamental risk signals.

24In Appendix H, I solve for the social planner problem in a two-period version of my model economy
and show that the optimal level of capital requirements is an increasing function of the bailout probability.
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A Empirical evidence: details and additional results

A.1 Detailed derivations of LGD�

First define the promised contractual debt cash flow at τ ¥ t� 1 as Cτ � PD
τ Dτ. Using

this definition, the default indicator and post-default payoffs can be rewritten as

∆τ � 1tYτAτ Cτu, rPD
τ � Cτ � p1� πτq

�
Cτ � V̂τ

�
∆τ.

Hence, the market price of debt is

SDt �
8̧

τ�t�1

βt,τ E�
t r
rPD
τ s �

8̧

τ�t�1

βt,τ E�
t rCτslooooooooomooooooooon

�At

�
8̧

τ�t�1

βt,τ E�
t

�
p1� πτqpCτ � V̂τq∆τ

�
loooooooooooooooooooooomoooooooooooooooooooooon

�Lt

,

where At is the risk-free present value of promised coupons and Lt is the present value of
expected losses.

We can now define the credit spread CSt as the non-negative scalar s that solves

SDt �
8̧

τ�t�1

βt,τ
Cτ

p1� sqτ�t
.

Substituting SDt � At � Lt gives

Lt �
8̧

τ�t�1

βt,τ E�
t rCτs

�
1� p1�CStq�pτ�tq

�
. (A.1)

Equation (A.1) expresses Lt entirely in terms of observed credit spreads CSt, the cash flow
schedule tCτu, and discount factors tβt,τu.

We further define the risk-neutral default probability

F�
t,τ � E�

t r∆τs,

and the losses conditional on default

LGD�
t,τ � E�

t

�
p1� πτqpCτ � V̂τq | ∆τ � 1

�
.

The single-period discounted expected loss is

ℓt,τ � βt,τ F�
t,τ LGD�

t,τ. (A.2)
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If Lt �
°8

τ�t�1 ℓt,τ, we can rearrange (A.2) using (A.1) to get

LGD�
t,τ �

ℓt,τ

βt,τ F�
t,τ

�
E�

t rCτs
�
1� p1�CStq�pτ�tq

�
F�
t,τ

, (A.3)

delivering the risk-neutral loss-given-default for every maturity τ ¡ t.
Given (A.3), the last step is to back out the simplified version in Equation (1) in the

main text. Provided the following simplifying assumptions hold:

1. Single-period horizon. Set τ � t� 1. Multi-period CDS contracts are rolled into a
one-year par spread, so the term pτ� tq � 1.

2. Par coupon schedule. The reference bond underlying the CDS is assumed to trade
at par with unit face value: E�

t rCt�1s � 1.

3. Small-spread approximation. For annualised spreads of a few hundred basis
points,

1� p1�CStq�1 �
CSt

1�CSt
� CSt.

4. Independence of recovery and timing. Expected recovery V̂t�1 is conditionally in-
dependent of default timing within the one-year window, consistent with standard
CDS pricing conventions.

Under (1)–(3), the numerator of (A.3) reduces to CSt,T , yielding the compact relationship

CSt,T � F�
t,TLGD�

t,T . (A.4)

A.2 Alternative estimator for risk-neutral default probabilities

An alternative method to estimate the default region relies on the Theil–Sen estimator
rather than ordinary least squares (OLS). Specifically, I preserve the progressive window
expansion framework, beginning with the two lowest strikes tK1,K2u and incrementally
increasing the candidate window size m from 2 to n. For each time t, maturity T and
proposed window tK1, . . . ,Kmu, the Theil–Sen slope estimate is given by

β̂TS � median1¤i j¤m

#
PutpKjq � PutpKiq

Kj �Ki

+
.

Once β̂TS is obtained, the modified coefficient of determination through the origin,

R2 � 1 �

°m
i�1

�
PutpKiq � β̂TS Ki

�2°m
i�1 PutpKiq2

,
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is computed to evaluate the goodness-of-fit. As long as R2 exceeds a predefined threshold
τ � 0.98, the procedure allows the window size m to expand. The iteration terminates
when adding an additional strike Km�1 causes R2 to drop below τ. Denoting by m� the
largest m for which the threshold requirement holds, I identify the upper boundary of
the default region as E � Km� . Finally, within this region of strikes tK1, . . . ,Km�u, the
Theil–Sen slope

β̂TS � median1¤i j¤m�

"
PutpKjq � PutpKiq

Kj �Ki

*
serves as the estimate of the risk-neutral default probability. The average estimate for
maturity of 35 days is reported in Figure A.1. The time series looks very similar to the
one obtained using OLS in the left panel of Figure 4.

Figure A.1: Median F�
t,T for T � 365 using the Theil–Sen estimator

Notes: risk–neutral default probability at a 365-day horizon, F�

t,T , estimated using the Theil–Sen procedure. Weekly series; 4-week
moving average in black.
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A.3 Information spillovers between options and CDS markets

To study cross-market information flow, I ask whether expected loss, LGD�
i,t,365, contains

predictive content for subsequent adjustments in the option-implied risk–neutral default
probability and in CDS spreads. If contemporaneous variation in LGD�

i,t,365 primarily
captures transitory noise or temporary implementation/model deviations in the options
market, we should observe mean reversion in the option-implied measure (a negative
slope in the regression for ∆F�) and little power for CDS. Conversely, if LGD�

i,t,365 embeds
credit information that is slow to be incorporated into CDS quotes, it should forecast
corrective movements in CDS, with the sign of the coefficient indicating which contract is
catching up. Guided by this logic, I estimate the following panel predictability regressions
with issuer and date fixed effects:

∆F�
i,tÑt�∆t � αi � τt �βp LGD�

i,t,365 � ε
p
i,t�∆t, (A.5)

∆CSi,tÑt�∆t � αi � τt �βc LGD�
i,t,365 � εci,t�∆t, (A.6)

where ∆F�
i,tÑt�∆t and ∆CSi,tÑt�∆t denote future changes over horizon ∆t in the

risk–neutral default probability and the one-year CDS spread, respectively. The fixed
effects pαi, τtq absorb Bank and Date effects, and standard errors are two-way clustered
by Bank and Date.

Across both forecasting horizons (7 and 30 days), higher LGD�
i,t,365 today is followed

by an increase in the option-implied risk–neutral default probability and a decline in
one-year CDS spreads. The signs imply that the expected loss tends to continue in the
direction of higher default risk while CDS quotes partially compress, consistent with
cross-market adjustment. Estimates are statistically precise under issuer and date fixed
effects with two-way clustered standard errors, and—as expected in a high-frequency
setting—the within-variation explained is intentionally modest. Comparing horizons,
the CDS adjustment is stronger at 30 days than at 7 days, whereas the option-implied
adjustment is more front-loaded at the 7-day horizon.

A.4 The variation in credit spreads explained by expected losses

To assess the degree to which variation in credit spreads mirrors changes in expected
losses I estimate

log
�
CSi,t,365

�
� β0 �β1 log

�
LGD�

i,t,365
�
�αi � τt � εi,t, (A.7)

where CSi,t,365 denotes the one-year CDS spread and LGD�
i,t,365 the corresponding risk-

neutral expected loss at time t for bank i. Equation (A.7) is estimated under four sets of
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Table A.1: Predictability from LGD�: ∆F� and ∆CS at 7 and 30 days

(a) ∆t � 7 days

Dependent Variables: ∆F�
7 d ∆CS7 d

Model: (1) (2)

Variables
LGD�

i,t,365 0.0120��� -0.0026���

(0.0022) (0.0006)

Fixed-effects
Bank Yes Yes
Date Yes Yes

Fit statistics
Observations 31,084 31,084
R2 0.40982 0.22131
Within R2 0.01225 0.00746

Clustered (permco & date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

(b) ∆t � 30 days

Dependent Variables: ∆F�
30 d ∆CS30 d

Model: (1) (2)

Variables
LGD�

i,t,365 0.0210��� -0.0074���

(0.0043) (0.0016)

Fixed-effects
Bank Yes Yes
Date Yes Yes

Fit statistics
Observations 30,394 30,394
R2 0.47759 0.30870
Within R2 0.01849 0.02536

Clustered (permco & date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: regressor is LGD�

i,t,365. All specifications include Bank and Date fixed effects. Two-way clustered SEs by Bank and Date.
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fixed effects. Table A.2 summarizes the results.
Across all four specifications the elasticity of one-year CDS spreads to expected losses

is strictly below one and highly significant. In the two-way fixed-effects model the coef-
ficient on logpLGD�

t,365q equals 0.736 with a clustered standard error of 0.066, so the null
hypothesis of unit elasticity is rejected at the one-percent level. Under risk-neutral val-
uation spreads would move one-for-one with expected losses; a coefficient below unity
therefore points to a positive price of default risk, as investors demand an additional pre-
mium that attenuates the mechanical pass-through from losses to spreads once bank and
date heterogeneity are purged.

The overall coefficient of determination R2 rises monotonically with the inclusion of
fixed effects and reaches 0.935 in the full model, indicating that cross-sectional and tempo-
ral dummies absorb nearly all variation in levels. The within-bank R2 climbs from 0.312
when only bank effects are added to 0.682 with date effects alone, then settles at 0.604
in the two-way specification. These fit statistics show that expected losses remain the
primary driver of time-series variation in spreads after accounting for extensive hetero-
geneity, yet investor risk aversion still drags the elasticity markedly below the theoretical
benchmark of one.

Table A.2: Estimates of the panel data regression (A.7)

Dependent Variable: logpCSt,365q
Model: (1) (2) (3) (4)

Variables
Constant -3.814���

(0.1725)
logpLGD�

t,365q 0.9003��� 0.7278��� 0.8772��� 0.7361���

(0.0698) (0.0606) (0.0850) (0.0659)

Fixed-effects
Bank Yes Yes
Date Yes Yes

Fit statistics
Observations 31,302 31,302 31,302 31,302
R2 0.48528 0.58845 0.86263 0.93474
Within R2 0.31213 0.68151 0.60409

Clustered (Bank) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: specifications include Bank and Date fixed effects. Two-way clustered SEs by Bank and Date. Credit spreads and expected
losses are measured in decimals.
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A.5 Liquidity-adjusted expected losses

Differences in risk-neutral default probabilities from options and CDS spreads may reflect
variation in losses given default, but they could also result from market frictions. Out-
of-the-money options used to estimate risk-neutral moments and option-implied default
probabilities may be thinly traded. Similarly, the liquidity of some CDS contracts is low.
Therefore, the observed decrease in losses given default during crises may instead reflect
changes in market liquidity. The approximate relation between CDS spreads, option-
implied default probabilities, and losses given default, discussed in Section 3, implies
that, in the absence of market frictions, the ratio between the CDS spread and the default
probability approximates the losses given default. To examine the extent to which mar-
ket liquidity influences this relationship, I estimate the variation in this difference as a
function of liquidity measures.

Illiquidity in the CDS and options markets may reflect both security-specific and
market-wide factors. For options, I use bid-ask spreads, open interest, and volume as
liquidity measures. Since default probabilities derived from options primarily depend on
out-of-the-money options, I compute SPREADO

t , the average percentage bid-ask spread
for such options. Additionally, VOLOt and OPENO

t represent the sum of volume and open
interest for these contracts. For CDS, I measure bank-specific liquidity using five-year
depth, DEPTHC

t , and assume other maturities co-move with it.25

Aggregate liquidity is captured by combining the Treasury-Eurodollar (TED) spread,
defined as the difference between the 90-day LIBOR and the 90-day Treasury Bill yield
until 2022, with the difference between the 90-day SOFR and the 90-day Treasury Bill
yield thereafter. The corresponding measure is denoted as FinStresst. An increase in
this spread signals increased interbank counterparty credit risk and reduced funding liq-
uidity. These data are obtained from the FRED Database. Additionally, equity market
liquidity is proxied using the VIX index, VIXt, as higher VIX levels are associated with
larger risk premia and reduced liquidity provision in equity markets (Nagel 2012). Data
on the VIX are also sourced from the FRED Database.

The effects of liquidity on the expected losses are estimated by regressing changes in
the logarithm of expected losses on changes in the logarithm of liquidity variables at the

25Depth is the quantity tradable at prevailing quotes, a liquidity proxy increasing with dealer activity
and traded notional. Five-year CDS is the on-the-run benchmark and anchors liquidity across maturities
as dealers hedge off-the-run with the five-year. Reliable high-frequency depth exists at five years, so I use
DEPTHC

t as a curve-wide proxy.
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aggregate level for every maturity T following Conrad et al. (2020):

∆ logpLGD�
t,T q � aT � b1∆ log FinStresst � b2∆ logVIXt � b3∆ logSPREADO

t,T

� b4∆ logVOLOt,T � b5∆ logOPENO
t,T � b6∆ logDEPTHC

t,T � et,T . (A.8)

The residuals from this regression are then used to construct a liquidity-adjusted mea-
sure of expected losses. Specifically, ˜LGD�

t,T is calculated by cumulating the residuals as
follows:

˜LGD�
t,T � exp

��âT �
ţ

j�0

êt�j,T

�
,

where ˜LGD�
t,T � LGD�

t,T at t � 1 (January 2000), and each period’s value incorporates the
residual from the regression above.

Figure A.2: LGD�
t,T versus ˜LGD�

t,T for T � 365 days

Notes: original expected losses LGD�

t,T (solid black) versus liquidity-adjusted ˜LGD�

t,T (solid orange) at weekly frequency for a
maturity of 365 days.

Figure A.2 plots the time series of ˜LGD�
t,T and LGD�

t,T for T � 365 days. ˜LGD�
t,T closely
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tracks the original LGD�
t,T before the financial crisis, but differs significantly after. ˜LGD�

t,T

is higher than LGD�
t,T beginning approximately in 2009. That is, adjusting for liquidity

effects results in an estimate of expected losses ˜LGD�
t,T that is meaningfully higher during

the financial crisis and in its aftermath. This has two implications. First, it suggests that
liquidity effects are not fully reflected in the original expected losses before the crisis. Sec-
ond, the fact that ˜LGD�

t,T exceeds LGD�
t,T during and after the financial crisis implies that

the apparent decline in losses given default from the unadjusted series was largely driven
by liquidity distortions. Once these are removed, the higher adjusted losses indicate that
the post-2010 increase in volatility and level of expected losses reflects a reduction in per-
ceived bailout support rather than a deterioration in underlying credit fundamentals.

Table A.3: Estimates of the time–series regression (A.8) for T � 365 days

Dependent Variable: ∆ log
�
LGD�

t,T
�

Model: (1)

Variables
Constant (aT ) -0.0001

(0.0037)
∆ log

�
VOLO

t,T

	
-0.0033
(0.0021)

∆ log
�

OPENO
t,T

	
0.0363���

(0.0085)
∆ log

�
SPREADO

t,T

	
-0.0655���

(0.0157)
∆ logpFinStresstq -0.0143

(0.0411)
∆ logpVIXtq -0.2848���

(0.0467)
∆ log

�
DEPTHC

t,T

	
0.0196

(0.0186)

Fit statistics
Observations 4,082
R2 0.01976
Adjusted R2 0.01832

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: the dependent variable is the daily log change in expected losses, ∆ logpLGD�

t,T q. The regression relates changes in expected
losses to changes in liquidity measures for options and CDS markets, as well as aggregate liquidity proxies following Conrad et al.
(2020). Standard errors are reported in parentheses.

Table A.3 reports the estimates of equation (A.8) for T � 365 days. The coefficients
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on the option-implied liquidity measures are consistent with the notion that illiquidity
distorts the raw measure of expected losses. In particular, increases in open interest are
associated with higher expected losses, while wider bid–ask spreads are associated with
lower expected losses, reflecting the impact of thin trading conditions. The negative and
statistically significant coefficient on the VIX indicates that periods of heightened market
volatility coincide with reductions in the unadjusted expected loss measure, consistent
with the interpretation that investors revise downward their expectations of government
support (bailout probability) when volatility spikes. Overall, the regression explains only
a small fraction of the daily variation (R2 � 0.02), in line with the objective of isolating
residual liquidity effects rather than fully accounting for movements in expected losses.

A.6 Identifying regulatory tightness from market prices

Properly estimating changes in perceived bailout protection requires explicitly account-
ing for changes in banks’ regulatory requirements after 2010. These reforms altered
banks’ capital structure and resolution regimes and, by design, lowered insolvency risk.
This section develops and implements an identification strategy that disentangles the ef-
fects of the post-GFC tightening of capital regulation from the effects of changes in bailout
expectations. The key insight is that, once we account for fundamentals, regulation and
bailout expectations move credit spreads and the downside variance of equity returns in
opposite directions.

We work with risk-neutral tail variances of equity returns. Let Var�t,T denote the up-
side variance and Var�t,T the downside variance over horizon rt, t� T s. Let ξ denote the
slackness of capital regulation (higher ξ means a slacker constraint, i.e., higher permitted
leverage) and let π denote bailout probability. Around a reference point, the observables
admit the local linearization

∆ logCSt � aJ∆Πt � eJ∆Yt � εSt , (A.9)

∆ log Var�t,T � bJ∆Πt � dJ∆Yt � ε�t , (A.10)

∆ log Var�t,T � gJ∆Πt � cJ∆Yt � ε�t , (A.11)

where ∆Πt � p∆ξt,∆πtq
J, a � psξ, sπqJ, b � pvξ, vπqJ, g � pwξ,wπq

J, and e,d, c are
conformable coefficient vectors on fundamentals ∆Yt (cash flow risk, risk appetite, rates,
etc.). The residuals pεSt , ε�t , ε�t q collect higher-order terms and idiosyncratic noise.

The identification result rests on the following assumptions.

Assumption 1. (i) Regulation. Tighter regulation (lower ξ) compresses leverage and reduces
both CSt and Var�t,T . Written with respect to ∆ξt, a rise in slackness raises spreads and left-tail
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variance: sξ ¡ 0 and vξ ¡ 0. (ii) Bailouts. Lower expected bailout support (a fall in π) increases
CSt and decreases Var�t,T . In the local linearization this corresponds to sπ   0 and vπ ¡ 0.

A more permissive constraint lets balance sheets lever up, widening credit spreads
via higher default risk and pushing more risk-neutral mass toward the default bound-
ary, hence raising the left-tail dispersion Var�. By contrast, stronger bailout protection
insures downside states by reducing default probability and/or loss-given-default borne
by junior claimants and compresses spreads.

Assumption 2. Changes in fundamentals ∆Yt affect Var�t,T and Var�t,T with similar signs: the
loading vectors d and c are colinear.

Aggregate volatility and cash flow news typically move both tails in the same direc-
tion. Assumption 2 states that the component of downside variance driven by funda-
mentals is proportional to the upside variance component. This allows us to use Var� as
a proxy for fundamentals when purging Var� of non-policy movements.

Assumption 3. Policy shocks are orthogonal to fundamentals: Er∆Πt | ∆Yts � 0. The residuals
pεSt , ε�t , ε�t q are mean-zero with finite variance and are uncorrelated with p∆Πt,∆Ytq.

This assumption treats the high-frequency innovations to regulatory slackness and
bailout expectations as conditionally exogenous with respect to contemporaneous funda-
mentals. It rules out, for example, mechanically reacting policy shocks within the period
to the same fundamental surprise that drives ∆Yt.

Assumption 2 implies there exists a scalar κF such that d � κFc. Define

Zt � ∆ log Var�t,T � κF∆ log Var�t,T .

Using (A.10)–(A.11) and d � κFc,

Zt � pb� κFgq
J∆Πt �

�
ε�t � κFε

�
t

�loooooomoooooon
ε̃t

,

so Zt is a (noisy) signal of an adjusted policy mixture pb� κFgq
J∆Πt that is orthogonal, in

population, to the fundamentals ∆Yt.26

To compare subsamples, we impose a second-moment restriction on the adjusted mix-
ture entering pb� κFgq

J∆Πt.

26Assumption 2 ensures that the linear combination with slope κF removes the ∆Yt-component from
∆ log Var�t,T . Policy loading in ∆ log Var�t,T does not interfere with this orthogonalization; it merely changes
the policy weights from b to b� κFg. In practice we estimate κF by projecting residualized log Var�i,t on
residualized log Var�i,t (see §A.6). Consistency requires that tail-specific noises are not systematically co-
moving after residualization, e.g., Covpε�t , ε�t q � 0 (or small).
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Assumption 4. Let Σ � Varp∆Πtq. Between the pre-2008 and the post-2010 subsamples: (a)
Covp∆ξt,∆πtq is small; and (b) the relative contribution of regulation shocks to the variability of
the adjusted downside mixture increases, in the precise sense that

vξ pvξ � κFwξqVarp∆ξtq
vπ pvπ � κFwπqVarp∆πtq

is larger post-2010 than pre-2008.

Assumption 4 states that the composition of shocks shifts toward regulation-driven
movements in downside risk relative to bailout-driven movements.

A mild dominance condition guarantees that the adjusted mixture preserves the sign
mapping in Assumption 1.

Assumption 5. vξ � κFwξ ¡ 0 and vπ � κFwπ ¡ 0.

Assumption 5 is weak and testable indirectly (the first-stage loading of Zt on
∆ log Var�t,T is then positive).

Proposition 3 (Orthogonalized projection with upside policy loading). Consider the popu-
lation regression

∆ logCSt � β∆ log Var�t,T � ut,

estimated by a two-stage projection that replaces ∆ log Var�t,T with its component orthogonal to
fundamentals using Zt. Under Assumptions 1–5, the coefficient equals

βOP �
CovpZt,∆ logCStq

CovpZt,∆ log Var�t,T q
�

pb� κFgq
JΣa

pb� κFgqJΣb
.

If Covp∆ξt,∆πtq is negligible, then

βOP �
sξ ṽξ Varp∆ξtq � sπ ṽπ Varp∆πtq

vξ ṽξ Varp∆ξtq � vπ ṽπ Varp∆πtq
, ṽj � vj � κFwj, j P tξ,πu.

Moreover, letting Σpre and Σpost denote the covariance matrices across the pre-2008 and post-2010
subsamples, if Assumptions 4 and 5 hold in both subsamples, then

βOP
post �βOP

pre ¡ 0.

Proof. We begin from the linearizations

∆ logCSt � aJ∆Πt � eJ∆Yt � εSt , (S0.1)

∆ log Var�t,T � bJ∆Πt � dJ∆Yt � ε�t , (S0.2)

∆ log Var�t,T � gJ∆Πt � cJ∆Yt � ε�t , (S0.3)

66



with ∆Πt � p∆ξt,∆πtq
J and coefficient vectors a � psξ, sπqJ, b � pvξ, vπqJ,

g � pwξ,wπq
J. Let Σ � Varp∆Πtq, positive semidefinite. Throughout we use As-

sumption 3, interpreted to imply that the noise terms are mean-zero, uncorrelated with
p∆Πt,∆Ytq, and mutually uncorrelated (so Covpε�t , ε�t q � Covpε�t , εSt q � Covpε�t , εSt q � 0).

Population 2SLS identity. In the just-identified IV problem with one endogenous regressor
Xt :� ∆ log Var�t,T , outcome Yt :� ∆ logCSt, and instrument Zt (all understood as already
partialed out of the controls used in the empirical implementation), the population 2SLS
estimand equals

βOP �
CovpZt, Ytq
CovpZt, Xtq

. (S2.1)

This follows from the IV normal equation ErZtpYt � βXtqs � 0 and instrument relevance
CovpZt,Xtq � 0.

Orthogonalization that purges fundamentals. Define

Zt � ∆ log Var�t,T � κF∆ log Var�t,T .

Substitute (S0.2)–(S0.3):

Zt � pbJ∆Πt � dJ∆Yt � ε�t q � κF pg
J∆Πt � cJ∆Yt � ε�t q

� pb� κFgq
J∆Πt � pd� κFcq

J∆Yt �
�
ε�t � κFε

�
t

�
.

By d � κFc (Assumption 2), pd� κFcq � 0, hence

Zt � pb� κFgq
J∆Πt � ε̃t, ε̃t � ε�t � κFε

�
t . (S1.1)

By Assumption 3 and the mutual uncorrelatedness of residuals, ε̃t is mean-zero and un-
correlated with p∆Πt,∆Yt, εSt , ε�t , ε�t q. Since Zt has no ∆Yt term, Zt is orthogonal, in pop-
ulation, to ∆Yt by construction.

Numerator of (S2.1). Using (S1.1) and (S0.1):

Cov
�
Zt,∆ logCSt

�
� Cov

�
pb� κFgq

J∆Πt � ε̃t, aJ∆Πt � eJ∆Yt � εSt

	
� Cov

�
pb� κFgq

J∆Πt, aJ∆Πt

�
�Cov

�
pb� κFgq

J∆Πt, eJ∆Yt
�

�Cov
�
pb� κFgq

J∆Πt, εSt
�
�Cov

�
ε̃t, aJ∆Πt

�
�Cov

�
ε̃t, eJ∆Yt

�
�Cov

�
ε̃t, εSt

�
.

Assumption 3 implies that all terms except the first vanish. Therefore

Cov
�
Zt,∆ logCSt

�
� Cov

�
pb� κFgq

J∆Πt, aJ∆Πt

�
� pb� κFgq

J Σa. (S3.1)
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Denominator of (S2.1). Using (S1.1) and (S0.2):

Cov
�
Zt,∆ log Var�t,T

�
� Cov

�
pb� κFgq

J∆Πt � ε̃t, bJ∆Πt � dJ∆Yt � ε�t

	
� Cov

�
pb� κFgq

J∆Πt, bJ∆Πt

�
�Cov

�
pb� κFgq

J∆Πt, dJ∆Yt
�loooooooooooooooooomoooooooooooooooooon

�0

�Cov
�
pb� κFgq

J∆Πt, ε�t
�looooooooooooooomooooooooooooooon

�0

�Cov
�
ε̃t, bJ∆Πt

�looooooooomooooooooon
�0

�Cov
�
ε̃t, dJ∆Yt

�loooooooomoooooooon
�0

�Cov
�
ε̃t, ε�t

�loooooomoooooon
�0

� pb� κFgq
J Σb.

Hence
Cov

�
Zt,∆ log Var�t,T

�
� pb� κFgq

J Σb. (S4.1)

Population 2SLS coefficient. Plugging (S3.1) and (S4.1) into (S2.1):

βOP �
pb� κFgq

JΣa

pb� κFgqJΣb
.

Component expansion. Write Σ elementwise as variances and covariances of p∆ξt,∆πtq:

Σ �

�
Varp∆ξtq Covp∆ξt,∆πtq

Covp∆ξt,∆πtq Varp∆πtq

�
.

Define ṽξ � vξ � κFwξ, ṽπ � vπ � κFwπ. Then

pb� κFgq
JΣa � sξṽξ Varp∆ξtq � sπṽπ Varp∆πtq � psξṽπ � sπṽξqCovp∆ξt,∆πtq,

pb� κFgq
JΣb � vξṽξ Varp∆ξtq � vπṽπ Varp∆πtq � pvξṽπ � vπṽξqCovp∆ξt,∆πtq.

If Covp∆ξt,∆πtq is negligible (Assumption 4(a)), we obtain

βOP �
sξṽξ Varp∆ξtq � sπṽπ Varp∆πtq

vξṽξ Varp∆ξtq � vπṽπ Varp∆πtq
, ṽj � vj � κFwj, j P tξ,πu.

Instrument relevance. Assumption 5 imposes ṽξ ¡ 0 and ṽπ ¡ 0. With Varp∆ξtq, Varp∆πtq ¥

0, and vξ, vπ ¡ 0 (Assumption 1), it follows that

pb� κFgq
JΣb � vξṽξ Varp∆ξtq � vπṽπ Varp∆πtq ¡ 0

provided at least one of Varp∆ξtq, Varp∆πtq is strictly positive.
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Cross-subsample monotonicity. Under small cross-covariances, define the adjusted regula-
tion share

R �
vξṽξ Varp∆ξtq
vπṽπ Varp∆πtq

P r0,8q.

Then
βOP � ϕpRq with ϕpRq �

sξR� sπ

vξR� vπ
.

Differentiate:

ϕ 1pRq �
psξqpvξR� vπq � psξR� sπqpvξq

pvξR� vπq2
�

sξvπ � sπvξ
pvξR� vπq2

.

By Assumption 1, sξ ¡ 0, vξ ¡ 0, sπ   0, vπ ¡ 0, hence sξvπ � sπvξ ¡ 0, so ϕ 1pRq ¡ 0
for all R ¥ 0. Assumption 4(b) states that the adjusted regulation share rises post-2010:
Rpost ¡ Rpre. Therefore

βOP
post �βOP

pre � ϕpRpostq �ϕpRpreq ¡ 0,

which shows that the post-minus-pre increase in the downside slope identifies a relative
strengthening of regulation in the adjusted mixture (and not a decline in bailout expecta-
tions).

We implement the identification strategy in a daily bank–date panel using option-
implied, model-free tail variances of equity returns. Following the static replication of
the log contract, the time-t risk-neutral variance over rt, T s admits the put–call integral
decomposition

Vart,T �
2

pT � tqRf,t

�
1

pSEt q
2


�» Ft,T

0
puttpK, TqdK�

» 8

Ft,T

calltpK, TqdK
�

,

with SEt the equity spot, Ft,T the forward, and Rf,t the gross risk-free rate; the first inte-
gral collects left-tail option payoffs and the second right-tail payoffs. We define the tail
components as

Var�t,T �
2

pT � tqRf,t

�
1

pSEt q
2


» Ft,T

0
puttpK, TqdK, (A.12)

Var�t,T �
2

pT � tqRf,t

�
1

pSEt q
2


» 8

Ft,T

calltpK, TqdK. (A.13)

We assemble a panel of banks observed daily, exclude the 2008–2009 crisis window,
and split the estimation into a pre-2008 subsample and a post-2010 subsample. Bank and
date fixed effects absorb time-invariant heterogeneity and common day shocks. Because
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the VIX is an aggregate proxy for market volatility that affects both tails, we include it as a
control and allow bank-specific VIX loadings to flexibly capture heterogeneous exposure
to market-wide volatility innovations. Two-way clustering by bank and by date is used
throughout.

To purge fundamentals, we first residualize the log tail variances on the same controls
that will appear in the structural equation:

r�i,t :� pε�i,t from log Var�i,t � αi � δt � Γi log VIXt � ε�i,t,

r�i,t :� pε�i,t from log Var�i,t � αi � δt � Γi log VIXt � ε�i,t.
(A.14)

Estimating the projection of r�i,t on r�i,t separately by subsample yields the sample ana-
logues of κF in each subsample:

κ�pre � arg min
κ

Erpr� � κr�q2 | pres, κ�post � arg min
κ

Erpr� � κr�q2 | posts.

We then form the subsample-specific orthogonalized downside shifters

Z
pre
i,t �

�
r�i,t � κ�prer

�
i,t

�
� 1tpreu, Z

post
i,t �

�
r�i,t � κ�postr

�
i,t

�
� 1tpostu. (A.15)

In addition—since upside may load on policy—we construct the symmetric orthogonal-
ized upside shifters using the projection of r�i,t on r�i,t:

Λ�
pre � arg min

λ
Erpr� � λr�q2 | pres, Λ�

post � arg min
λ

Erpr� � λr�q2 | posts, (A.16)

W
pre
i,t �

�
r�i,t �Λ�

prer
�
i,t

�
� 1tpreu, W

post
i,t �

�
r�i,t �Λ�

postr
�
i,t

�
� 1tpostu. (A.17)

By construction, pZsub
i,t ,Wsub

i,t q are orthogonal (in population) to fundamentals proxied by
the controls and co-move with the policy-shock mixtures entering the tails.

We estimate subsample-specific slopes of credit spreads on both tail variances via the
interacted two-stage least squares

logCSi,t � β
pre
�

�
log Var�i,t � 1tpreu

�
�β

post
�

�
log Var�i,t � 1tpostu

�
�β

pre
�

�
log Var�i,t � 1tpreu

�
�β

post
�

�
log Var�i,t � 1tpostu

�
(A.18)

�αi � δt � Γi log VIXt � εi,t,

treating the four interacted tail regressors as endogenous and replacing them with the
fitted values from the corresponding projections that use pZpre

i,t ,Zpost
i,t ,Wpre

i,t ,Wpost
i,t q.

First-stage regressions confirm that the subsample-specific orthogonalized shifters are
highly informative for their intended tail-by-subsample regressors. For the downside tail
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variance, the instruments

Z
pre
i,t �

�
r�i,t � κ�prer

�
i,t

�
� 1tpreu, Z

post
i,t �

�
r�i,t � κ�postr

�
i,t

�
� 1tpostu

load strongly on the endogenous regressors

�
log Var�i,t

�
� 1tpreu and

�
log Var�i,t

�
� 1tpostu,

respectively (own-subsample coefficients of 1.334 and 1.083 with t � 37.50 and 12.23),
while cross-subsample spillovers are much smaller in magnitude (0.222 and �0.140). For
the upside tail variance, the symmetric instruments

W
pre
i,t �

�
r�i,t �Λ�

prer
�
i,t

�
� 1tpreu, W

post
i,t �

�
r�i,t �Λ�

postr
�
i,t

�
� 1tpostu

dominate the first stages for

�
log Var�i,t

�
� 1tpreu and

�
log Var�i,t

�
� 1tpostu,

with own-subsample coefficients 1.258 and 1.168 (t � 58.20 and 18.37) and modest
cross-subsample terms (0.137 and 0.260). Across all four endogenous regressors, instru-
ment relevance is overwhelming: the first-stage F-statistics are 97,217 and 27,816 for the
downside-pre and downside-post regressors, and 85,356 and 32,542 for the upside-pre
and upside-post regressors (all p   10�15), comfortably exceeding weak-IV thresholds.
These patterns match the construction in (A.14)–(A.17) and support Assumption 5:
own-subsample loadings are large and positive, while cross-subsample spillovers are
comparatively small.

Turning to the structural stage, bank CDS spreads load positively on both tail vari-
ances in each subsample. The post-2010 downside coefficient is larger and statistically
significant, pβpost

� � 0.419 pSE � 0.181, p � 0.026q,

whereas the pre-2008 downside coefficient is smaller and statistically weaker,

pβpre
� � 0.217 pSE � 0.148, p � 0.152q.

Upside coefficients are positive and precisely estimated in both subsamples,

pβpre
� � 0.126 pSE � 0.042, p � 0.005q, pβpost

� � 0.223 pSE � 0.065, p � 0.0015q.

Bank and date fixed effects, together with bank-specific VIX slopes, absorb time-invariant
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heterogeneity and common day shocks; the model attains an adjusted R2 of 0.863.
The subsample contrast in the downside slope is positive and economically meaning-

ful:

∆pβ� � pβpost
� � pβpre

� � 0.202 rSE � 0.114s, t � 1.77, pone-sided � 0.038.

This increase maps monotonically to a rise in the adjusted regulation share of the downside
policy mixture, hence the post-2010 steepening of the spread-downside relation identifies
tighter regulation (a larger regulation-driven share in the adjusted mixture), not a decline
in bailout expectations. Tables A.4 and A.5 report the full projection and structural stages
of the exercise.

B Equilibrium conditions

This section presents the problem faced by households and intermediaries and the im-
plied equilibrium conditions. Recall that the states vector is S � rL,W,π,Z,ds.

B.1 Stand-in household

The stand-in household solves

VHpSq � max
C,B1

!
p1�βqC 1� 1

ν �βESrV
HpS1q1�γs

1� 1
ν

1�γ

) 1
1� 1

ν ,

subject to

W � TpSq ¥ C� qpSqB1 � qdpSqD1, (B.1)

W � ΠpSq �ΠIpSq �D1 �B1
�
1�FpSq �FpSq

�
π� p1� πqRVpω�, Sq

��
, (B.2)

S1 � Γ
�
S
�
. (B.3)

Here F �
³
ωPD dFpωq is the default probability and RVpω�, Sq is the expected recovery

value of the bank’s bond conditional on default. The certainty equivalent of future utility
is

CEpSq � ESr pV
HpS1qq1�γs

1
1�γ , MpS1, Sq � β

�
VHpS1q
CEpSq

	1
ν�γ�

C1

C

	� 1
ν .

Taking first–order conditions with respect to bonds yields

qpSq � ES

�
MpS1, Sq

!
1�FpS1q �FpS1q

�
π1 � p1� π1qRVpω�,1, Sq

�)�
, (B.4)
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Table A.5: Structural stage estimates for the spread–tail relation by subsample, esti-
mated from (A.18)

Dependent variable logCSi,t

log Var�i,t � 1tpreu 0.2168
p0.1482q

log Var�i,t � 1tpostu 0.4190��

p0.1809q
log Var�i,t � 1tpreu 0.1262���

p0.0423q
log Var�i,t � 1tpostu 0.2228���

p0.0650q
Bank-specific VIX slope Γi log VIXt Included (coefficients omitted)

Fixed effects
Bank (αi) Yes
Date (δt) Yes

Fit statistics
Observations 46,042
R2 0.87654
Within R2 0.20277

Standard errors (in parentheses) clustered by bank & date.
Significance codes: ��� p   0.01, �� p   0.05, � p   0.10.

Notes: endogenous regressors: all four interacted tail variables. Regressors are replaced by their fitted values from projections using
pZ

pre
i,t ,Zpost

i,t ,Wpre
i,t ,Wpost

i,t q. Bank and date fixed effects and bank-specific VIX slopes included. Two-way clustered standard errors
(bank, date).
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where

ω� � Eω rω | ω   ω�pSqs .

B.2 Intermediaries

B.2.1 Aggregation

Given our assumed functional form for the equity issuance, the intermediary problem is
homogeneous of degree 1 in net worth n. We can thus define the scaled variables ẽ � e{n,
ã1 � a1{n, d̃1 � d1{n, b̃1 � b1{n, and the value function vpSq such that

Vpn, Sq � nvpSq.

We can write the growth rate of net worth, ñ � n{n�1, for some realization of the idiosyn-
cratic shock ω and given assets and liabilities

�
ã1, d̃1, b̃1

�
as

ñ
�
ω1, ã1, b̃1, d̃1, S1

�
� Ppω1, S1qã1 � b̃1 � d̃1. (B.5)

Thus, the growth rate next period, conditional on not defaulting, is

Eω

�
ñ
�
ω1, ã1, b̃1, d̃1, S1

�
| ω ¡ ω�pSq

�
� ñ

�
ω�,1, ã1, b̃1, d̃1, S1

�
,

where

ω� � Eω rω | ω ¡ ω�pSqs .

Using the definition of n
�
ω, ã, b̃, d̃, S

�
in (B.5), we can write the representative interme-

diary problem as

v pSq � max
ẽ,ã1,d̃1¤D̄,b̃1

ϕ0 � ẽ

�ES
�
MpS1, Sqv

�
S1
� �

1�FpS1q
�
ñ
�
ω�, ã1, b̃1, d̃1, S1

��
(B.6)

subject to

1�ϕ0 � ẽ�
ϕ1

2
pẽq2 � ppSqã1 � q

�
ã1, b̃1, d̃1; S

�
b̃1 � pqdpSq � κqd̃1,

and
b̃1 � d̃1 ¤ ξppSqã1.
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Aggregation in the intermediary sector uses the following additional assumption. At the
beginning of each period, intermediaries are randomly reassigned across islands, so that
an intermediary’s island identity is i.i.d. over time and independent of its balance sheet
and portfolio choices. This prevents persistent sorting across islands and guarantees that
the cross-sectional distribution of intermediaries can be summarized by aggregate inter-
mediary net worth N. Together with (i) island shocks ω being uncorrelated over time and
(ii) the value function being homogeneous of degree one in net worth, this reassignment
delivers a representative-intermediary problem that depends only on the aggregate state
S.

B.2.2 First-order conditions

I denote the Lagrange multiplier on the budget constraint by µpSq, the Lagrange mul-
tiplier on the leverage constraint by λpSq, and the Lagrange multiplier on the deposit
constraint by λdpSq. The FOC with respect to ẽ is

µpSq �
1

1�ϕ1ẽ
. (B.7)

The FOC with respect to a1 is given by

µpSq
�
ppSq �

BqpSq
Bã1

b̃1


� λpSqξppSq �EStMpS1, Sqv

�
S1
�
p1�FpS1qqPpω�,1, S1qu. (B.8)

The FOC for d1 is

µpSq
�
qdpSq � κ�

BqpSq
Bd̃1

b̃1


� λpSq � λdpSq �EStMpS1, Sqv

�
S1
�
p1�FpS1qqu. (B.9)

Finally, the FOC for b1 yields

µpSq
�
q�

Bq

Bb̃1
b̃1


� λpSq �EStMpS1, Sqv

�
S1
�
p1�FpS1qqu. (B.10)

The envelope condition is
v pSq � ϕ0 � µpSq p1�ϕ0q .
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We can divide by µpSq and re-write more compactly

ppSq �
BqpSq
Bã1

b̃1 � λ̃pSqξppSq � EStMpS1, Sq p1�ϕ1ẽq

�
ϕ0 �

1�ϕ0

1�ϕ1ẽ1



p1�FpS1qqPpω�,1, S1qu,

(B.11)

qdpSq � κ�
BqpSq
Bd̃1

b̃1 � λ̃pSq � λ̃dpSq � EStMpS1, Sq p1�ϕ1ẽq

�
ϕ0 �

1�ϕ0

1�ϕ1ẽ1



p1�FpS1qqu,

(B.12)

qpSq �
BqpSq
Bb̃1

b̃1 � λ̃pSq � EStMpS1, Sq p1�ϕ1ẽq

�
ϕ0 �

1�ϕ0

1�ϕ1ẽ1



p1�FpS1qqu.

(B.13)

where λ̃pSq � λpSq
µpSq is the scaled Lagrange multiplier on the leverage constraint and

λ̃dpSq � λdpSq
µpSq is the scaled Lagrange multiplier on the deposit constraint.

B.2.3 Aggregate intermediary net worth

At the beginning of each period, a fraction of intermediaries default before paying divi-
dends to shareholders and choosing the portfolio for next period. The government takes
ownership of these bankrupt intermediaries and liquidates them to recover some of the
outstanding debt. Bankrupt intermediaries are immediately replaced by newly started
intermediaries that households endow with initial equity n0 per intermediary. Then all
intermediaries, including newly started ones, solve the identical optimization problem in
(B.6).

Denote the aggregate net worth of intermediaries when they solve their decision prob-
lem for the next period, by N. Then the average net worth of surviving intermediaries in
t� 1 is recursively defined as

N� � ñ
�
ω�, ã1, d̃1, b̃1, S1

�looooooooooomooooooooooon
growth rate to t�1

p1�ϕ0 � ẽqNlooooooomooooooon
net worth after payout/issuance in t

,

where ñ
�
ω�, ã1, d̃1, b̃1, S1

�
is the growth rate of net worth of non-defaulting intermediaries

as defined in (B.5). The aggregate net worth of intermediaries thus follows the recursion

N � p1�FpSqqN� �FpSqn0.

Given this expression of intermediary net worth, I can recover all aggregate intermediary
choices, that is, B1 � b̃1N,D1 � d̃1N, A1 � ã1N and so forth.27

27A simple sufficient lower bound on payouts that rules out unbounded equity accumulation follows
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B.3 Derivatives of debt price

To obtain the partial derivatives we need to differentiate equation (B.4). Let’s first rewrite
it as

qpSq � ES

!
MpS1, Sq

�
1�FpS1q �FpS1q

�
π1 � p1� π1q

p1� χqPpω�,1, S1qA1 �D1

B1


�)
.

We can rewrite the recovery value times the probability of default as

Rpω, Sq � FpS1q
p1� χqPpω�,1, S1qA1 �D1

B1
� FpS1qRVB, (B.14)

where ω� � Eωpω | ω   ω�pSqq. Recall that ω�pS1q is the default threshold, which
satisfies the following equation:

Ppω�pS1qqA1 �D1 �B1 � 0.

First, we compute the derivative of the default threshold with respect to A1, D1 and B1 as

Bω�pS1q
BA1

� �
Ppω�pS1qq

P1pω�pS1qqA1

Bω�pS1q
BD1

�
1

P1pω�pS1qqA1

Bω�pS1q
BB1

�
1

P1pω�pS1qqA1
.

Then we take derivatives of FpS1q:

BFpS1q
BA1

� f1ω
Bω�pS1q
BA1

BFpS1q
BD1

� f1ω
Bω�pS1q
BD1

BFpS1q
BB1

� f1ω
Bω�pS1q
BB1

.

from the aggregate net worth recursion N� � ñpω�, ã1, b̃1, d̃1, S1q p1 � ϕ0 � ẽqN for survivors and N �
p1�FpSqqN� �FpSqn0 in the cross-section. The first-order condition µpSq � 1{p1�ϕ1ẽq implies ẽ   1{ϕ1
(issuance is bounded by costs). Let ḡ ¥ supSp1� FpSqq ñpω�, ã1, b̃1, d̃1, S1q be an upper bound on survival-
weighted net-worth growth. Since 1�ϕ0 � ẽ ¤ 1�ϕ0 � 1{ϕ1, a sufficient condition for N not to explode is
p1�ϕ0 � 1{ϕ1q ḡ   1, i.e., ϕ0 ¡ 1� 1{ϕ1 � 1{ḡ. This bound is sufficient (not necessary) and uses only that
issuance is costly, which caps ẽ.
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Finally, we can differentiate (B.14) to get

BR

BA1
�

�
FpS1qPpω�,1, S1q

pB1q
� RV

BFpS1q
BA1

�
BR

BD1
�

�
�

FpS1q
B1

� RV
BFpS1q
BD1

�
BR

BB1
�

�
�

FpS1qRV
pB1q

� RV
BFpS1q
BB1

�
.

Hence the derivatives of qpSq are

BqpSq
BA1

� E
!
MpS1, Sqp1� π1q

�
BR

BA1
�
BFpS1q
BA1

�)
BqpSq
BD1

� E
!
MpS1, Sqp1� π1q

�
BR

BD1
�
BFpS1q
BD1

�)
BqpSq
BB1

� E
!
MpS1, Sqp1� π1q

�
BR

BB1
�
BFpS1q
BB1

�)
.

The last piece is the derivative of the loan payoff with respect to ω. Define

z̄pωq �
c� 1� δ

ωY
,

so that

Ppω, Sq �
�
c� 1� δ� δppSq

��
1�G

�
z̄
��

� ωY

» z̄

�8
z dGpzq.

Then,

BPpω, Sq
Bω

� �
�
c� 1� δ� δppSq

�
gpz̄q

dz̄

dω
� Ȳz gpz̄q

dz̄

dω

�
�
Yz̄� pc� 1� δ� δppSqq

�
gpz̄q

dz̄

dω
,

with
dz̄

dω
� �

c� 1� δ

ω2Y
. Substituting and replacing z̄ � c� 1� δ{pYωq:

BPpω, Sq
Bω

�
�
c� 1� δ� δppSq � c�1�δ

Yω

� c� 1� δ

Yω2 g

�
c� 1� δ

ωY



.
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C Proofs

C.1 Proof of Proposition 1

Starting from (20),

CS pSq �
1

ES
�
MpS 1, Sq

�ES
 
MpS 1, Sq p1� π 1qFpS1q

�
1� RVpω�,1, S 1q

�(
.

At date t, π 1 � πt�1 is not known and enters inside the conditional expectation. The
derivative we take is with respect to the t-measurable parameter that shifts the condi-
tional law of π 1, for concreteness the conditional mean µπ,t � Etrπt�1s. Because the term
p1� π 1q enters (20) linearly and 0 ¤ π 1 ¤ 1,

B

Bµπ,t
Et

�
Mp1� π 1qX

�
� Et

�
Mp�Xq

�
,

with X � FpS1qp1�RVpω�,1, S 1qq, and the interchange of derivative and expectation is jus-
tified by dominated convergence since MX is integrable and bounded in π 1. The indirect
term depends on µπ,t only via the optimal policy B 1pµπ,tq. Under the standard regularity
(unique interior optimum, continuously differentiable primitives), BB 1{Bµπ,t exists by the
implicit function theorem, and the Leibniz rule applies to move the derivative inside the
expectation. If one instead considers a pathwise derivative with respect to a specific re-
alization of π 1, the same expression is obtained because the integrand is affine in π 1; the
conditions for commutation hold for the same integrability reasons.

Differentiating with respect to the bailout probability (at date t, π 1 is a random variable
realized at t� 1):

BCS pSq
Bπ 1

�
1

ES
�
MpS 1, Sq

�ES

!
MpS 1, Sq

�
�FpS1qr1� RVpω�,1, S 1qslooooooooooooooomooooooooooooooon

direct effect

�p1� π 1q Bπ 1
�
FpS1qr1� RVpω�,1, S 1qs

�looooooooooooooooooooooomooooooooooooooooooooooon
indirect effect

�)
.

The indirect component operates through intermediaries’ optimal choice of next-period
debt, B 1, which affects default losses via the default threshold ω 1 and recovery RV . By the
envelope/implicit-function arguments for the bank’s problem, the entire dependence of
default losses on π 1 is through B 1:

Bπ 1
�
FpS1qp1� RVpω�,1, S 1qq

�
�
BB 1

Bπ 1
B

BB 1

�
FpS1qp1� RVpω�,1, S 1qq

�
.

80



Collecting terms and writing the derivative with respect to B 1 in elasticity form yields

B

BB 1

�
FpS1qp1� RVpω�,1, S 1qq

�
�

1
B 1

ΩpS1q,

with

ΩpS1q �
�
D1 �B1 � p1� χqPpω�pS1q, S 1q

�
fpω�pS1qq

dω�pS1q
dB 1

�FpS1qRVpω�,1, S 1q ¥ 0,

which summarizes: (i) the increase in default probability through a higher threshold
ω�pS1q when B 1 rises (first term, using dω�pS1q{dB 1 ¡ 0), and (ii) the dilution of recovery
among a larger face value of debt (second term). Substituting back gives the expression
in the statement, where the first bracketed term is the indirect effect and the second is the
direct effect.

C.2 Proof of Proposition 2

Starting again from (20),

CS pSq �
1

ES
�
MpS 1, Sq

�ES
 
MpS 1, Sq p1� π 1qFpS1q

�
1� RVpω�,1, S 1q

�(
.

Similarly to the proof of Proposition 1, differentiating with respect to the fundamental
risk (at date t, Y 1 is a random variable realized at t� 1) and interchanging derivative and
expectation under the usual integrability conditions gives

BCS pSq
BY1

� ES

!
MpS 1, Sqp1� π 1q BY 1

�
FpS1qr1� RVpω�,1, S 1qs

�)
.

Holding the stochastic discount factor MpS 1, Sq and the loan price ppSq fixed, changes
in Y 1 affect default losses through two channels: (i) a direct cash-flow effect via P that
shifts the default threshold and recoveries even for a fixed B 1, and (ii) an indirect effect
operating through the optimal choice B 1pY 1q. By the chain rule, for any differentiable
hpY 1,B 1q we have

d

dY 1
h
�
Y 1,B 1pY 1q

�
� BY 1hpY

1,B 1q
��
B 1 fixed �

BB 1

BY 1
BB 1hpY 1,B 1q.
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Applying this total-derivative decomposition to hpY 1,B 1q � FpS1qp1�RVpω�,1, S 1qq yields

BY 1
�
FpS1qp1� RVpω�,1, S 1q

�
�
�
p1� RVpω�,1, S 1qq BY 1FpS1q �FpS1q BY 1RVpω�,1, S 1q

�
holding B 1 fixedlooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

direct effect

�
BB 1

BY 1
B

BB 1

�
FpS1qp1� RVpω�,1, S 1qq

�looooooooooooooooooooomooooooooooooooooooooon
indirect effect

.

The indirect term can be written as

B

BB 1

�
FpS1qp1� RVpω�,1, S 1qq

�
�

1
B 1

ΩpS1q,

with

ΩpS1q �
�
D1 �B1 � p1� χqPpω�pS1q, S 1q

�
fpω�pS1qq

dω�pS1q
dB 1

�FpS1qRVpω�,1, S 1q ¥ 0,

as defined above.
For the direct cash-flow effect, the default threshold ω�pS1q solves

Ppω�pS1q, S 1q �D 1 �B 1 � 0.

By the implicit function theorem,

dω�pS1q
dY 1

� �
BYPpω

�pS1q, S 1q

BωPpω�pS1q, S 1q
, BY 1FpS1q � fpω�pS1qq

dω�pS1q
dY 1

� � fpω�pS1qq
BYP

BωP
pω�pS1q, S 1q.

Within the default region the bond recovery is RVpω�pS1q, S 1q �
�
p1� χqPpω�pS1q, S 1q �

D 1
�
{B 1, so, holding B 1 fixed,

BY 1RVpω
�pS1q, S 1q �

p1� χq

B 1

�
BYPpω

�pS1q, S 1q � BωPpω
�pS1q, S 1q

dω�pS1q
dY 1

	
.

Since BYP ¥ 0 and BωP ¥ 0 by (6)–(7), we have BY 1FpS1q ¤ 0 and BY 1RVpω�pS1q, S 1q ¥ 0, so
the direct effect is weakly negative.

Collecting terms,

BY 1
�
FpS1qp1� RVpω�pS1q, S 1qq

�
�
�
p1� RVpω�pS1q, S 1qq BY 1FpS1q � FpS1qpS 1q BY 1RVpω

�pS1q, S 1q
�loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

¤0

�
BB 1

BY 1
1
B 1

ΩpS1q.

Under the condition that banks delever when fundamentals weaken, BB 1{BY 1 ¥ 0, the
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indirect term is positive as well, and since BY 1pFpS1qp1� RVpω�pS1q, S 1qqq ¥ 0, The overall
sign is ambiguous.

For completeness, using (6)–(7) and letting z̄pω, Yq � pc� 1� δq{pωYq,

BPpω, Sq
BY

�
�
c� 1� δ� δppSq

�
g
�
z̄
� z̄

Y
� p1� ηqω

» z̄

0
z gpzqdz � p1� ηqω z̄2 g

�
z̄
�

¥ 0.

D Computational solution method

This appendix describes the numerical algorithm that solves the dynamic general equi-
librium model laid out in Appendix B. The implementation follows the policy iteration
framework of Elenev et al. (2021). We first approximate the unknown policy and transi-
tion functions by discretizing the state space and employing multivariate linear interpo-
lation. Starting with an initial guess for the policy and transition functions, we iteratively
solve the model at each discretized state-space node. At each node, we compute opti-
mal policies by solving the system of nonlinear equilibrium conditions, reformulating
Kuhn–Tucker inequalities as equality constraints suitable for standard nonlinear solvers.
Given these solutions, we update the transition functions and repeat the procedure until
convergence. This iterative process is fully parallelized across state-space points within
each iteration. Finally, we simulate the model forward for many periods using the approx-
imated policy and transition functions. We verify that the simulated trajectories remain
within the pre-defined bounds of the discretized state space. To assess computational ac-
curacy, we calculate relative Euler equation errors along the simulated paths. If trajecto-
ries breach the grid boundaries or the approximation errors exceed acceptable thresholds,
we refine the grid by adjusting bounds or redistributing points, and repeat the solution
procedure.

The state space consists of four exogenous state variables rZt,dt,πts, and two endoge-
nous state variables rBt,Dts. We first discretize Zt into a NZ-state Markov chain using the

Rouwenhurst (1995) method. The procedure chooses the productivity grid points
 
Zj

(NZ

j�1
and the NZ �NZ Markov transition matrix PZ. The same method is used to discretize Dt

and πt. The disaster shock dt can take on two realizations t0, 1u. The 2� 2 Markov tran-
sition matrix between these states is given by Pd. Denote the set of the Nx � 2�NZ�Nπ

values the exogenous state variables can take on as Sx �
 
Zj

(NZ

j�1 � t0, 1u �
 
πj

(Nπ

j�1, and
the associated Markov transition matrix Px � PZ bPd bPπ bPD.

The solution algorithm requires the approximation of continuous functions defined
on the endogenous state variables. Let the true endogenous state space of the model be
defined as follows: each endogenous state variable St P tBt,Dtu lies within a continuous
and convex subset of real numbers characterized by constant state boundaries rS̄l, S̄us.
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Thus, the endogenous state space is given by:

Sn �
�
B̄l, B̄u

�
�
�
D̄l, D̄u

�
.

The total state space is then defined as S � Sx � Sn.
To approximate a general function f : S Ñ R, we construct a univariate grid of

strictly increasing points (not necessarily equidistant) for each endogenous state variable:
tBju

NB
j�1, tDku

ND
k�1. These grid points are selected to adequately cover the ergodic distri-

bution of the economy in each dimension, thereby minimizing computational errors. We
denote the discretized set of endogenous-state grid points by:

Ŝn � tBju
NB
j�1 � tDku

ND
k�1,

and the total discretized state space as Ŝ � Sx � Ŝn. This discretized state space contains
a total of NS � Nx �NB �ND points, each represented as a 2 � 1 vector corresponding
to the two distinct state variables. Given values tfjuN

S

j�1 of function f at each grid point
ŝj P Ŝ, we can approximate f via multivariate linear interpolation. The solution method
approximates three distinct sets of functions defined on the domain of state variables:

• Policy Functions (CP): These functions, CP : S Ñ P � RNC
, determine equilib-

rium prices, agents’ choice variables, and Lagrange multipliers on portfolio con-
straints. Specifically, the 8 policy functions include bond and deposit prices qupSq,
asset prices ppSq, consumption CpSq, equity issuance for intermediaries epSq, choices
of bonds and deposits for intermediaries BpSq,DpSq, and multipliers on constraints
λpSq, λDpSq.

• Transition Functions (CT ): These functions, CT : S � Sx Ñ Sn, specify the next-
period endogenous state variables as functions of the current state and next-period
exogenous shocks. Each endogenous state variable corresponds to one transition
function.

• Forecasting Functions (CF): These functions, CF : SÑ F � RNF
, are used to compute

expectations terms required by the equilibrium conditions. Forecasting functions
partially overlap with policy functions but include additional terms. In this model,
they consist of bond price qpSq, consumption CpSq, equity issuance epSq, household
value functions VHpSq, intermediary value function vpSq, and the loan price ppSq.

Given an initial guess C0 � tC0
P,C0

T ,C0
Fu, the equilibrium computation algorithm pro-

ceeds through the following steps:

Step A: Initialization. Set the current iterate Cm � tCm
P ,Cm

T ,Cm
F u � tC0

P,C0
T ,C0

Fu.
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Step B: Forecasting Values Computation. For each discretized state-space point sj P Ŝ,
j � 1, . . . ,NS, perform the following sub-steps:

i. Evaluate the transition functions at sj combined with each possible realization of
the exogenous shocks xi P Sx, obtaining next-period endogenous state realizations
s1jpxiq � Cm

T psj, xiq, for i � 1, . . . ,Nx.

ii. Evaluate forecasting functions at these future state realizations, obtaining fmi,j �

Cm
F ps

1
jpxiq, xiq.

This produces an Nx �NS forecasting matrix Fm, where each entry is a vector given
by:

fmi,j �
�
qi,j,Ci,j, ei,j,VH

i,j,Vi,j,pi,j
�

.

Step C: Solving the System of Nonlinear Equations. At each discretized state-space
point sj P Ŝ, j � 1, . . . ,NS, solve the nonlinear equilibrium conditions for the correspond-
ing set of 8 policy variables. Given the forecasting matrix Fm from Step B, solve:

P̂j �
�
q̂j, p̂j, Ĉj, êj, B̂j, D̂j, λ̂j, λ̂Dj

�
,

where each vector P̂j satisfies the corresponding equilibrium conditions at sj. The eight
equations are:

q̂j � �
Bq̂j

BB j
B j � λ̂j �Es1i,j|sj

�
M̂I

i,j
�
, (D.1)

p̂j �
Bq̂j

BA j
B j � λ̂j ξp̂j �Es1i,j|sj

�
M̂I

i,j P̂i,jpω
�
i,jq

�
, (D.2)

p1�ϕ0qN̂j � êj �
ϕ1

2
�
êj
�2
� p̂j Â j � q̂j B̂ j � pq̂

D
j � κq D̂ j, (D.3)�

ξp̂jÂ j � B̂ j � D̂ j

�
λ̂j � 0, (D.4)

Ŵj � T̂j ¥ Ĉj � q̂j B̂ j � q̂D
j D̂ j, (D.5)�

D̂j � D̂j

�
λ̂Dj � 0, (D.6)

q̂D
j � κ�

Bq̂j

BD j
B j � λ̂j � λ̂Dj �Es1i,j|sj

�
M̂I

i,j
�
, (D.7)

q̂j � Es1i,j|sj

�
M̂i,j

!
1� F̂i,j � F̂i,j

�
πi,j � p1� πi,jq

p1� χqP̂i,jpω
�
i,jqÂj � D̂j

B̂j

	)�
,

(D.8)
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All expectations are weighted sums over the exogenous-state transitions. Variables car-
rying a hat ( ˆ ) are direct functions of the policy vector P̂j—they are the choice variables
passed to the nonlinear solver at state sj. In contrast, quantities with subscripts ti, ju are
pre-computed numbers: they depend only on the forecasting vector Fm from Step B and
therefore remain fixed while solving the local system. For example, the stochastic dis-
count factors for households is

M̂i,j � β
�
Vi,j
CEj

	 1
ν�γ�Ci,j

Ĉj

	� 1
ν ,

where Vi,j and Ci,j come from Fm, while Ĉj is part of the current policy vector being solved
for. To compute the expectation at point sj, we first look up the corresponding column
j in the matrix containing the forecasting values that we computed in step B,Fm. This
column contains the Nx vectors, one for each possible realization of the exogenous state,
of the forecasting values defined in (F). From these vectors, we need consumption Ci,j

and the value function Vi,j. Further, we need current consumption Ĉj, which is a policy
variable chosen by the nonlinear equation solver. Denoting the probability of moving
from current exogenous state xj to state xi as πi,j, we compute the certainty equivalent

CEj �

��¸
xi|xj

πi,j
�
Vi,j

�1�γ

�� 1
1�γ

,

and then complete expectation as

Es1i,j|sj

�
M̂i,j

�
�

¸
xi|xj

πi,jβ

�
Vi,j

CEj


1{ν�σ
�
Ci,j

Ĉj

��1{ν

.

The mapping of solution and forecasting vectors pPq and pFq into the other expressions
in the system follows the same principles and is based on the definitions in Model Ap-
pendix B. To solve the system in practice, we use a nonlinear equation solver that relies
on a variant of Newton’s method, using policy functions Cm

P as initial guess. The final
output of this step is an NS� 8 matrix Pm�1, where each row is the solution vector P̂j that
solves the system above at point sj.

Step D: Updating Forecasting, Policy, and Transition Functions. Given the new pol-
icy matrix Pm�1 from Step C, set the policy functions to Cm�1

P Ð Pm�1. All forecasting
functions except the value functions coincide with the policy functions and are updated
in the same way. Hats denote current-policy variables, while subscripts pi, jq refer to fixed
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forecasting quantities from Fm. For value functions, update

V̂j �
!
p1�βqrĈjs

1�1{ν �βExi|xj

�
pVi,jq

1�σ
�1�1{ν

1�γ
)1{p1�1{νq

,

V̂j � ϕ0Nj � êj �Exi|xj

�
M̂i,jp1� Fω,i,jqVi,j

�
.

These updated objects form Ĉm�1
F . For transition functions, plug the new policies into

each law of motion to obtain Cm�1
T .

Step E: Convergence Check. Compute

∆F �
��Cm�1

F � Cm
F

��, ∆T �
��Cm�1

T � Cm
T

��.
If ∆F   TolF and ∆T   TolT , stop and set C� � Cm�1. Otherwise apply dampening,

Cm�1 � DCm � p1�Dq Ĉm�1, 0   D   1,

reset Pm Ð Pm�1, and return to Step B.

Step F: Simulation. With the converged solution C� � Cm�1 in hand, we simulate the
model for T̄ � Tini � T periods.

1. Exogenous shocks. The exogenous state xt follows a Markov chain with transition ma-
trix Πx. Starting from x0 and a fixed random seed, we draw T̄ � 1 uniform random
numbers to generate the path txtuT̄t�1 via standard inversion.

2. Endogenous states. Given the initial vector s0 � rB0,D0,Z0,D0,d0,π0s, we update
rBt�1,Dt�1s � C�T pst, xt�1q, producing the complete sequence tstuT̄t�1.

3. Burn-in. We discard the first Tini observations and keep t � 1, . . . , T to eliminate
dependence on initial conditions.

4. Policy and forecast evaluation. Along the retained sample we evaluate the policy and
forecasting functions, yielding the simulated data set tst,Pt, ftuTt�1.
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D.1 Numerical integration of island shocks

For a given idiosyncratic (“island”) shock ωt ¡ 0, the gross period-t return on the inter-
mediary’s loan portfolio is

Ptpωtq �
�
c� p1� δq � δpt

� » 8

zpωt,Zt,dtq
gpzqdz� p1� ηqωt Zt e

�ζdt

» zpωt,Zt,dtq

0
z gpzqdz,

(D.9)
where the default boundary solving yt � c� p1� δq is

zpωt,Zt,dtq �
c� p1� δq

ωt Zt e�ζdt
. (D.10)

Let tpxk,wkqu
K
k�1 be the K Gauss–Legendre nodes and weights on r�1, 1s; transforming

them by zk �
z̄
2pxk � 1q for any upper limit z̄ ¡ 0 gives

» z̄

0
gpzqdz �

z̄

2

Ķ

k�1

wk gpzkq,
» z̄

0
z gpzqdz �

z̄

2

Ķ

k�1

wk zk gpzkq. (D.11)

Because
³8
z gpzqdz � 1 �

³z
0 gpzqdz, substituting z̄ � zpωt,Zt,dtq from (7) into (D.11)

delivers the quadrature approximation

pPtpωtq �
�
c� p1� δq � δpt

��
1�

z

2

Ķ

k�1

wk gpzkq

�
� p1� ηqωt Zt e

�ζdt
z

2

Ķ

k�1

wk zk gpzkq,

(D.12)
where zk � z

2pxk � 1q. The same Gauss–Legendre grid also discretises the shock itself:
for ω � LogNp1,σ2

ωq with logω � Npµ̂, σ̂2q, where σ̂2 � logp1 � σ2
ωq and µ̂ � �1

2 σ̂
2,

each node gives ωk � exp
�
µ̂ � σ̂Φ�1pxk�1

2 q
�

and any smooth Fpωq satisfies ErFpωqs �
1
2
°K

k�1 wk Fpωkq. Choosing K � 7 yields machine-precision accuracy with negligible com-
putational cost.

D.2 Evaluating the solution

To evaluate solution quality we perform two checks along the simulated sample path.

1. Grid boundary check. We verify that each simulated state remains inside the grids
defined in Step A. Whenever a trajectory exits a bound we enlarge the affected grid
range and restart the algorithm from Step A. We also create histogram plots for the
endogenous state variables, overlaid with the placement of grid points. These types
of plots allow us to check the quality of the grid approximation and that the sim-
ulated path of the economy does not violate the state grid boundaries. It further

88



helps us to determine where to place grid points. Histogram plots for the bench-
mark economy are in Figure D.1.

Figure D.1: Debt Histogram
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Histogram plot for the endogenous state variables (debt) from an 80,000-period simulation of the benchmark model. The blue vertical
lines represent the grid points.

2. Relative Euler error check. For every period t and every equilibrium condition and
transition law of motion ℓ, we compute the relative error

ε
pℓq
t � 1�

RHSpℓqt

LHSpℓqt

,

scaling by a representative endogenous variable taken from the equation. We report
the average, median, and tail percentiles of |εpℓqt |. Excessive errors trigger a local
grid refinement and a fresh solve–simulate cycle. Table D.1 reports the median er-
ror, the 95th percentile of the error distribution, the 99th, and the 100th percentiles
during the simulation of the model. Median and 75th percentile errors are small
for all equations. Maximum errors are on the order of 0.4% for equations (D.3). It
is possible to reduce these errors by placing more grid points in those areas of the
state space but adding points to eliminate the tail errors has little to no effect on any
of the results at the cost of increased computation times.
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Computational errors

Equation Avg. Median 75th pct. 95th pct. 99th pct. 99.5th pct.

(D.1) 5.6748e-05 5.0148e-05 7.8169e-05 1.3691e-04 1.7030e-04 1.7995e-04
(D.2) 4.5492e-05 4.0050e-05 6.2785e-05 1.1316e-04 1.4052e-04 1.4902e-04
(D.3) 0.0011 9.2890e-04 0.0014 0.0026 0.0038 0.0043
(D.4) 8.9997e-05 9.5819e-05 1.2634e-04 1.6539e-04 1.8748e-04 1.9524e-04
(D.5) 7.5519e-05 7.0822e-05 9.7695e-05 1.6551e-04 2.1957e-04 2.4732e-04
(D.6) 2.6146e-18 0 0 0 1.3092e-16 2.6688e-16
(D.7) 5.5286e-05 4.9312e-05 7.6156e-05 1.3377e-04 1.6617e-04 1.7520e-04

Table D.1: The table reports average, median, 75th percentile, 95th percentile, 99th per-
centile, and 99.5th percentile absolute errors, evaluated at state space points from a
80,000 period simulation of the benchmark model. Each row corresponds to an equa-
tion of the nonlinear system (E1)–(E15) listed in step 2 of the solution procedure and
to the transition equations for the state variables (T1)–(T4). The first column lists the
corresponding equation references in Appendix D.

E Model calibration

Option-implied BofA IG Bond Spread. We measure the investment-grade corporate
bond spread using the ICE BofA Option-Adjusted Spread (OAS) indexes available from
the Federal Reserve Economic Data (FRED). Specifically, we download the daily OAS for
the AAA, AA, A, and BBB rating tiers (FRED series IDs: BAMLC0A1CAAA, BAMLC0A2CAA,
BAMLC0A3CA, and BAMLC0A4CBBB). For each business day t we construct an “IG average
OAS” as the simple mean of these four series, handling missing values by averaging the
available ratings on that day. The sample runs from 2000-01-01 to 2020-12-31. These OAS
series are computed from bond prices and adjust for embedded call options; they are not
derived from equity options.

From the daily IG average OAS we build lower-frequency aggregates used in the cal-
ibration and diagnostics. A quarterly series is obtained by keeping the end-of-quarter
observation (last trading day of each quarter). An annual series is the arithmetic mean
of the four quarterly values within each calendar year. On the annual series we report
the mean, standard deviation, and the AR(1) persistence parameter (estimated with an
intercept).

For disaster diagnostics, let µ and σ denote the sample mean and standard deviation of
the quarterly IG average OAS. We label a quarter as a “disaster quarter” when the spread
exceeds the threshold µ� 2.5σ. We report (i) the mean spread within disaster quarters, (ii)
the number of distinct disaster episodes (maximal contiguous runs of disaster quarters),
(iii) their average duration in quarters, and (iv) their frequency relative to the full sample.

For visualization we also aggregate the daily series to weekly frequency by averaging
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within week (Monday–Sunday) and overlay a 4-week moving average. The horizontal
dashed line in the right panel of Figure E.1 marks the disaster threshold µ� 2.5σ com-
puted from the quarterly series.

3-month U.S. Treasury Yield. We proxy the short risk-free rate with the 3-month Trea-
sury Constant Maturity Rate from the Federal Reserve Economic Data (FRED), series
DGS3MO, release H.15 Selected Interest Rates. This series reports the market yield on
U.S. Treasury securities at a 3-month constant maturity, quoted on an investment basis at
daily frequency. The series goes from 2000-01-01 to 2020-12-31. We construct a quarterly
series by taking the end-of-quarter observation, build an annual series as the mean of the
quarterly averages, and report the mean and standard deviation for the quarterly and
annual series.

Intermediary Payouts. We measure equity issuance and payout activity of bank
holding companies h in quarter t using FR Y–9C Schedule HC and HI items. The
primary equity issuance flow is identified from common stock sales. The relevant
item is “Sale of common stock”, MDRM BHCK3579. Preferred equity flows are tracked
separately, using “Sale of preferred stock”, BHCK3577, and “Repurchase of preferred
stock”, BHCK3578, together with BHCK4596 for earlier preferred stock issues. Trea-
sury stock transactions are included through “Sale of treasury stock”, BHCK4782, and
“Purchase of treasury stock”, BHCK4783. The issuance measure is defined as the net
positive inflow from sales of common and preferred stock and treasury stock sales,
i.e., Issuanceh,t � maxt0, BHCK3579 � BHCK3580 � BHCK3577 � BHCK4782u, normalized
by beginning-of-quarter equity from Schedule HC, item 27, BHCK3210. This yields the
quarterly equity issuance rate Issuanceh,t{BHCK3210h,t�1.

Equity payouts are measured from dividends and repurchases. Regular cash divi-
dends are taken from Schedule HI “Cash dividends declared”, MDRM BHCK4460, and
adjusted to remove cumulative reporting across quarters by differencing within calendar
years. Share repurchases are taken from BHCK3578 (repurchase of preferred stock) and
BHCK4783 (purchase of treasury stock). We define the gross payout flow as Payouth,t �

BHCK4460�BHCK3578�BHCK4783, normalized again by lagged book equity, BHCK3210h,t�1.
To harmonize across reporting regimes, we apply the following adjustments: (i) use

first differences for dividend flows within a fiscal year to ensure quarterly frequency, (ii)
set flows to zero where missing but the equity base is reported, and (iii) winsorize the
resulting rates at the 1st and 99th percentiles within quarter to reduce the influence of
extreme values. Both issuance and payout rates are thus defined as equity flows scaled by
beginning-of-quarter book equity, consistently constructed across time, and are expressed
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at the holding-company level.

Insured Deposits and Uninsured Debt. For each bank holding company h and quarter
t we measure uninsured deposits by summing across all depository subsidiaries s con-
trolled by h in quarter t the Call Report Schedule RC–O Memorandum item “Estimated
amount of uninsured deposits, including related interest accrued and unpaid”, MDRM
RCON5597 for domestic offices (or RCFD5597 where reported on a consolidated basis), i.e.,
Uh,t �

°
sPhUs,t with Us,t � RCON5597s,t. We pair this with the holding-company con-

solidated total deposits from the FR Y–9C balance sheet, Schedule HC “Deposits”, item
13, MDRM BHCK2200, denoted Dh,t � BHCK2200h,t. We then define the insured-deposit
measure as the residual Ih,t � Dh,t�Uh,t. When RCON/RCFD5597 is not reported for a sub-
sidiary in a given quarter, we construct a conservative fallback proxy from Schedule RC–E
size buckets for time deposits: before the March 2010 insurance-limit change we use “To-
tal time deposits of $100,000 or more”, MDRM RCON2604; from March 2010 forward we
use “Total time deposits of more than $250,000”, MDRM RCONJ474; where available we
also use the split “Total time deposits of $100,000 through $250,000”, RCONJ473, and “Time
deposits of less than $100,000” ($250,000 after 2017 on Y–9C), RCON6648 (Y–9C successors
BHCBHK29 for   $250,000 and BHCBJ474 for ¡ $250,000), to verify internal consistency. We
aggregate these RC–E quantities to h and use them only when 5597 is missing, recog-
nizing that this proxy can understate uninsured amounts if large non-time transaction or
savings balances exceed the insurance limit; when RC–E Memorandum item 1 provides
amounts for “deposit accounts (excluding retirement) of more than $250,000” and for “re-
tirement deposit accounts of more than $250,000” we reference the corresponding MDRM
items RCONF051 and RCONF048 to check plausibility but do not replace 5597-based values.
The construction proceeds as follows in a single pass for every h, t: (i) map subsidiary
banks to their ultimate parent at t using the regulatory structure as of the report date; (ii)
compute Uh,t by summing RCON/RCFD5597 across subsidiaries (or the RC–E proxy where
needed); (iii) read Dh,t � BHCK2200 from FR Y–9C; (iv) set uninsured deposits � Uh,t and
insured deposits � maxt0,Dh,t �Uh,tu.

After the variables are formed we merge them to the FR Y–9C panel by holding-
company identifier and quarter and apply deterministic screening and outlier treatment
used uniformly across quarters. First, we drop holding-company quarters with zero total
deposits (Dh,t � 0) and we drop quarters with extreme quarter-over-quarter asset growth
in levels exceeding 20% in absolute value to remove structural breaks and mismerges.
Second, before computing any downstream funding ratios we set the basic deposit com-
ponents used elsewhere (noninterest-bearing, demand, other savings, time ¤ limit, and
time ¡ limit, each split into U.S. and subsidiary-office scopes) to zero when missing and
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then form the composite “core” and “wholesale” deposit series; these composite deposit
series are set to missing prior to 1986:Q2 to align the sample with the availability of the
underlying items.

Figure E.1: Option-adjusted BofA IG Bond Spread

Notes: the plot shows the Option-adjusted BofA IG bond spread at weekly frequency (black line). The dashed black horizontal line
represents the level at 2.5 st.dev above the mean.

F Details on counterfactual experiments

This section provides details on the counterfactual experiment of Section 7. First, we
explain how we use a sequential Monte Carlo particle filter (also called the bootstrap par-
ticle filter) to extract information on the sequence of tπtu (e.g., Gordon et al. 1995, Chopin
et al. 2020, Doucet et al. 2001). Second, we discuss how we generate the decomposition of
Figure 8.
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Beginning in 2010 (inclusive), we evaluate the policy function under the model with
ξ � 10.5% rather than the baseline value to account for post-crisis regulatory changes; for
t   2010 the baseline policy function is used.

For annual data 2004–2015, the nonlinear state–space system is

Yt � gpStq �ηt,

St � fpSt�1, εtq,
(F.1)

where the 4� 1 state vector and structural innovations are

St �
�
Lt,Wt,πt, Zt, dt

�J, εt �
�
εBt , επt , εZt

�J.

The 2 � 1 measurement vector contains the one–year credit-spread differential and the
risk-neutral default probability constructed in Section 3:

Yt �
�
CSt,365, F�

t,365
�J.

To respect the positive support and skewness of observed spreads we set

CSdata
t,365 � g1pStq exppηCSt q, ηCSt � N

�
�1

2σ
2
CS, σ2

CS

�
,

while the empirical default probability obeys a shifted beta law,

Q�data
t,365 � g2pStq � η

Q
t , η

Q
t � Beta

�
αt,βt

�
�ErBetapαt,βtqs.

Each quarter the beta parameters

αt �
�
p1� µtq{vt � µt

�
µ2
t , βt � αt

�
1{µt � 1

�
match the filtered mean µt � g2pStq and variance vt � 0.01 pσ2pQ�data

t,365 q, while σ2
CS �

0.01 pσ2pCSdata
t,365q. Only CSt,365 and F�

t,365 carry measurement noise.
Let Yt�rY1, . . . , Yts denote the history of observed vectors up to time t, and write

ppSt | Ytq

for the conditional law of the (latent) state vector. No closed-form expression exists for
ppSt | Ytq and therefore we approximate it at every t with an auxiliary particle filter that
maintains a collection of weighted particles tpSi

t, w̃
i
tqu

N
i�1 such that, for any integrable
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function f,
1
N

Ņ

i�1

fpSi
tq w̃

i
t

a.s.−−Ñ E
�
fpStq | Yt

�
.

The mean of the simulated particles then provides a smoothed path for the unobserved
state.

Each recursion proceeds as follows:

1. Initialisation (t � 0). Draw an initial cloud tSi
0u

N
i�1 from a suitable prior and set the

associated (unnormalised) weights to w̃i
0 � 1 for all i.

2. Prediction (time t). For each particle i � 1, . . . ,N, simulate a forecast state

Si
t|t�1 � ppSt | Si

t�1q

using the state-transition from the model as described in Section D.

3. Updating of importance weights. Compute the incremental weight for every fore-
cast particle as

wi
t � p

�
Yt | Si

t|t�1
�
w̃i

t�1.

4. Normalisation and resampling.

(a) Normalise the unnormalised weights so they sum to one: w̃i
t � wi

t

M°N
j�1 w

j
t.

(b) Draw N � 100000 particles with replacement from tSi
t|t�1, w̃i

tu
N
i�1 and re-label

the resampled set as tSi
tu

N
i�1.

(c) Reset all weights to unity, w̃i
t � 1.

5. Iterate. If t   T , increase tÐ t� 1 and return to Step 2; otherwise terminate.

The next step is to decompose the counterfactual into its components. We now discuss
how we use the approximation to

 
p
�
St | Yt

�(2015
t�2004 along with the structural model to

generate the decomposition presented in Figure 8.
Define the model-implied credit spread

xCSt,365 �
Ņ

i�1

g1pS
piq
t q w̃

piq
t ,

where g1pStq is the policy function for the credit spread differential. Starting in 2010
(inclusive), g1 is evaluated under the model with ξ � 10.5% rather than the baseline
value to reflect regulatory changes. The measurement error is

ηCSt � CSdata
t,365 �

xCSt,365.
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We generate the fundamental component by freezing the bailout probability at its pre-
crisis level and backing up the spread

xCSfund
t,365 �

Ņ

i�1

g1

�
Spiqt | πt�1 � π̄H

	
w̃
piq
t ,

The bailout component is then

∆Bailout
t � xCSt,365 � xCSfund

t,365.

The same procedure is applied for the counterfactual with fixed Bt�1 � B̄ and Dt�1 �

D̄ where B̄ and D̄ are the ergodic means of the uninsured debt and insured deposits,
respectively. For all evaluations with t ¥ 2010, we likewise use the policy function from
the model with ξ � 10.5%.

To construct the model counterpart of the correlation between credit spreads and the
downside risk-neutral equity variance across subsamples, we first purge fundamentals
using the model’s decomposition. For each date t, we first compute the total one-year
spread xCSt,365 and the downside risk-neutral equity variance Var�t,365 under the time-
appropriate policy (baseline pre-2010, tighter post-2010). We then obtain their fundamen-
tal counterparts by re-evaluating the same objects while fixing the bailout probability at
its pre-crisis level, πt�1 � π̄H, holding the filtered fundamentals in St and the regulation
regime fixed. The bailout/regulation components are

�CSt � xCSt,365 � xCSfund
t,365, �Var

�

t,365 � Var�t,365 �Var�,fund
t,365 .

We then estimate the following log–log regression separately in the two subsamples to
obtain slope coefficients βpre and βpost:

log �CSt � αpre �βpre log �Var
�

t,365 � εt, t P r2004, 2007s,

log �CSt � αpost �βpost log �Var
�

t,365 � εt, t P r2010, 2015s.

This procedure removes movements driven by fundamentals and aligns the model with
the empirical subsample break; see Section A.6 for data counterparts for tail variances
and the identification logic.
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G Model extensions

G.1 Equity injections

In this appendix we extend the baseline environment to allow for bailouts that recapitalize
the intermediary itself via equity injections. In this version, the bailout probability π is
the probability that an insolvent intermediary is recapitalized as a going concern by the
government rather than liquidated. The government injects just enough equity to restore
solvency, takes ownership of the intermediary, and immediately rebates that ownership
to households. Existing private shareholders are diluted in those states, which creates
an additional wedge for equity valuation but preserves going-concern value relative to
outright liquidation.

Insolvency set and shortfall. Let D denote the set of shock realizations for which an
intermediary would be insolvent absent intervention. For asset choices A 1 and promised
repayments B 1 �D 1, define the shortfall function

Jpω; Sq �
�
B 1 �D 1 �Ppω, SqA 1

�
�

, D �
 
ω : Jpω; Sq ¡ 0

(
. (G.1)

Bailout technology and ownership. If ω P D, then with probability π the government
injects Jpω; Sq units of equity to exactly meet promised payments and keep the inter-
mediary operating as a going concern. In exchange, it receives an equity claim on the
intermediary that is transferred immediately to households (a rebate of ownership). With
probability 1�π, no intervention occurs and the intermediary is liquidated as in the base-
line, with creditors recovering a fraction χ P r0, 1s of post-default asset value and the
remainder lost as deadweight costs of bankruptcy.

Two implications follow:

1. Creditor payoffs in insolvency states remain as in the baseline: they receive B 1�D 1

with probability π and χPpω, SqA 1 otherwise. Hence the debt-pricing condition is
unchanged conditional on π.

2. Equity-holders are diluted in bailout states. Pre-existing private equity receives
no claim in ω P Dt, regardless of whether a bailout occurs; in bailout states the
government’s ownership claim (immediately rebated to households) absorbs the
going-concern value that would otherwise not exist under liquidation. This wedge
shows up in the equity value function and in the aggregate dividend to households
via the government rebate.

97



Government budget and rebates. Let TpSq be lump-sum taxes on households and κD 1

the fee revenue collected from intermediaries (as in the baseline). The government’s pe-
riod budget with equity injections is

TpSq � κD 1 � πES

�
Jpω; Sq ItωPDu

�
� RGpSq, (G.2)

where RGpSq is the contemporaneous rebate to households of the ownership the govern-
ment acquires upon recapitalization. In the baseline results we will keep RGpSq as an ex-
plicit object so as not to impose valuation assumptions on the government’s claim. Two
convenient normalizations are: (i) cash-for-ownership: set RG � 0 so recap injections are
financed net by taxes; or (ii) ownership-as-transfer: set RGpSq � θESr Jpω; Sq ItωPDu s for
some θ P r0, 1s that governs how much of the recap value is immediately rebated.

Household budget and dividends. Let ΠI denote aggregate intermediary dividends as
in the baseline. Households receive the additional transfer RGpSq and pay taxes TpSq, so
their budget constraint is unchanged except for the replacement ΠI ÞÑ ΠI � RGpSq � TpSq.

Aggregate resource constraint. Relative to the baseline resource constraint in Equa-
tion (15), equity injections remove bankruptcy deadweight losses in the fraction π of in-
solvency states and replace them with government-financed recapitalizations. Denoting
by ΞliqpSq the baseline resource drain associated with liquidation (the term multiplying χ

in (15)), the goods market clearing condition becomes

Y � C�Φe
�
e
N

�
� p1� πqΞliqpSq � (disaster output losses as in baseline). (G.3)

That is, liquidation losses are scaled by 1� πt; in bailout states there are no bankruptcy
deadweight losses, but public resources are used per (G.2) and redistributed via RG.

Intermediary problem and pricing. Because creditors’ payoffs in insolvency states are
unchanged conditional on π, the debt pricing kernel is the same as in the baseline condi-
tional on π. Equityholders’ value, however, now embeds an additional dilution wedge:
in all ω P D, they receive zero regardless of intervention, but with probability π the econ-
omy avoids deadweight losses and ownership is transferred to households through RG.
Accordingly, the representative intermediary’s value-per-unit-of-net-worth vpSq is as in
the baseline except that prices and the shadow value of net worth reflect (G.3) and (G.2).
The aggregation in Section B carries through with the following adjustment to aggregate
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dividends:

ΠI � N
�
ϕ0 �

e
N

	
� Fn0 � RGpSq, (G.4)

where F � Fpω�q is the mass of defaulting intermediaries, as in the baseline. The last
term is the ownership rebate from government recapitalizations.

This extension nests the baseline as a special case: setting RG � 0 and interpreting π

as the probability of creditor-only bailouts reproduces the original resource and pricing
equations. Allowing RG ¡ 0 captures the idea that, in equity bailouts, the government
acquires going-concern value and immediately passes it to households, creating dilution
for incumbent shareholders while eliminating liquidation losses in those states.

The extension does not materially change the main quantitative mechanisms of the
paper—pricing of debt, leverage incentives, and macro propagation remain the same
conditional on π. However, equity injections mechanically suppress measured default
frequencies because insolvent intermediaries that are recapitalized do not default. This
makes the mapping between π and observed default probabilities inconsistent with the
data moments we use and can be problematic for identification based on defaults. For
this reason, our baseline focuses on creditor-only bailouts.

G.2 Intermediaries’ asset choice

In this section we consider an extension of the model in which intermediaries do not
hold the entire pool of risky assets. To be the case, we assume that now also house-
holds can invest in debt claims as intermediaries AH1. However, households do not have
access to the intermediaries’ superior (costless) monitoring technology. They can hold
corporate debt that does not require screening and monitoring, such as highly rated cor-
porate bonds, without incurring any monitoring cost. A subset of the total supply of
corporate debt φ0   1 satisfies this requirement. If households want to expand (or
shrink) their holdings of corporate debt away from the amount φ0, they incur costs:

ΦHpAH1q � φ1
2

�
AH1

φ0
� 1

	2
φ0 (Brunnermeier & Sannikov 2014, Elenev et al. 2021). In equi-

librium, it must be the case that AH � 1�A and that the resource constraint is satisfied
such that

Y � C�Φe pe{Nq � χA

»
ωPD

Ppω, Sqfpωqdω

� ηY

» » zpω,Yq

0
ωzgpzqfpωqdzdω�ΦHpAH1q. (G.5)
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One interpretation is that the household represents other intermediaries who are partic-
ipants in the same asset markets of the banks (e.g., shadow banks/non-bank financial
intermediaries). Another potential interpretation is that they represent a costly securiti-
zation technology which allows banks to sell aggregate risk off their balance sheet. The
household first-order condition then reads

ppSq � ES

#
MpS1, Sq

»
Ppω, S1qfpωqdω

+
�ΦH,1pAH1q. (G.6)

Importantly, the household holds a diversified portfolio of debt claims differently from
the intermediaries.

Allowing households to absorb part of the risky debt leaves the core risk-taking mar-
gin—leverage—intact. The new element is that intermediaries can directly scale their
exposure to fundamental risk by choosing a smaller A (selling/securitizing risk to house-
holds), in addition to adjusting leverage. This extra margin does not overturn our main
results; it simply offers another channel to attenuate aggregate risk while the key identi-
fication lever in the main exercise remains intermediaries’ leverage choice.

G.3 Endogenous deposits

This subsection endogenizes deposit creation and pricing by removing the exogenous ca-
pacity constraint and letting deposits deliver liquidity services to households. Deposits
from different intermediaries are imperfect substitutes in liquidity provision, so a bank’s
issuance affects the marginal liquidity value of its own deposits through a CES aggrega-
tor. As a result, the deposit price qd embeds a state-contingent liquidity premium and
becomes decreasing in the quantity a bank issues, implying that larger issuance raises the
deposit rate. Intermediaries internalize this price impact and choose deposit quantities
by trading off the liquidity premium against the dilution in marginal liquidity (market
power), with the strength of the price-quantity trade-off governed by the substitutability
parameter ρ. In equilibrium, deposits are finite, deposit rates are upward-sloping in is-
suance, and greater substitutability (higher ρ) compresses spreads and weakens market
power. The baseline with effectively perfectly elastic deposits is nested as liquidity ser-
vices are shut down or as ρ Ñ 1; the extension leaves the core risk-taking margin intact
while disciplining how deposit levels and deposit rates move with liquidity demand and
competition.
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Households. Households derive period utility from consumption and from liquidity
services provided by deposits. The recursive problem is

VHpSq � max
C,B1, tD1

iuiPr0,1s

!
p1�βqu 1� 1

ν �βESrV
HpS1qs

1� 1
ν

1�σ

) 1
1� 1

ν ,

where u � CϑL1ptD1
iuq

1�θ. subject to the same set of constraints as in the baseline econ-
omy. Deposits from different banks are imperfect substitutes in providing liquidity. Let
the liquidity aggregator be the CES index

L1ptD1
iuq �

�» 1

0
pD1

iq
ρ di

�1{ρ

, ρ P p0, 1s. (G.7)

Households’ marginal liquidity value of deposits at bank i is

L1
i �

BL1

BD1
i

�

�» 1

0
pD1

jq
ρdj

�1
ρ�1

pD1
iq
ρ�1 �

pD1
iq
ρ�1�

L1
�ρ�1 . (G.8)

Holding aggregate liquidity fixed, its own-elasticity is

BL1
i

BD1
i

� �
1� ρ

D1
i

L1
i. (G.9)

Optimality with respect to insured deposits yields

qd
i,tpSq � Et

!
MpS1, Sq

�
1� 1�θ

ϑ
C1

L1 L
1
i

	)
(G.10)

where the SDF is defined as

MpS1, Sq � β
�
VHpS1q
CEpSq

	1
ν�γ�

u1

u

	1� 1
ν
�
C1

C

	�1
.

Financial Intermediaries. The representative intermediary’s problem is the same as in
the baseline, but now the capacity constraint on deposits is excluded and the first-order
condition for deposits is modified to take into account intermediaries market power in
deposit markets namely

qdpSq � κ�
BqdpSq
Bd̃1

d̃1 �
BqpSq
Bd̃1

b̃1 � λ̃pSq � EStM
IpS1, Sqp1�FpS1qqu. (G.11)
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For deposits, intermediaries internalize the effect of their issuance on qdpSq through
households’ liquidity services. From (G.8)-(G.10),

BqdpSq
BD1

i

� Et

!
MpS1, Sq 1�θ

ϑ
C1

L1

BL1
i

BD1
i

)
� �Et

!
MpS1, Sq 1�θ

ϑ
C1

L1 p1� ρq
L1
i

D1
i

)
. (G.12)

Under a symmetric equilibrium where all banks choose the same D1
i,

BqdpSq
BD1

� �Et

!
MpS1, Sq 1�θ

ϑ
C1

L1 p1� ρq
1
D1

)
. (G.13)

When issuing deposits, intermediaries are now going to trade off the liquidity premium
with the reduction in market power.

H Simple economy

H.1 Environment

Agents, preferences and endowments. There are two periods, t � 1, 2 and a single con-
sumption good (dollar), which serves as numeraire. The economy is populated by a unit
measure of risk-neutral consumers indexed by C, and intermediaries indexed by I, and a
government. There is also a social planner/regulator/government, who sets bailouts and
leverage regulation. We denote the possible states of nature at date 1 by ω P r0, ω̄s. As
described below, ω corresponds to the realization of the returns to intermediaries’ tech-
nology. Consumers discount the future with a discount factor β and own debt and equity
of intermediaries. The endowments of the consumption goods of consumers at date 1
and 2 are

 
nC

1 ,nC
2 pωq

(
. The budget constraint of intermediaries at date 0 is given by

d1 � qpb,aqb� pa,

where p denotes the price of asset, qpb,aq the price of debt, b the face value of debt, a the
amount of asset purchased, and d1 is the equity issued if d1   0 or the dividend paid if
d1 ¡ 0. The budget constraint of intermediaries at date 1 in state ω is given by

d2pωq � maxtωa� b, 0u.
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The budget constraint of consumers at date 1 and at date 2 in state ω are given by

c1 � nC
1 � qpb,kqb� d1,

c2pωq � nC
2 pωq � d2pωq � b

�
Itωa¥bu � πItωa bu � p1� πqχ

ωa

b
Itωa bu

	
� T2.

The budget constraint in period 1 equalizes the consumption of consumers and with the
savings in debt qpb,aqb and equity to intermediaries. The budget constraint in period 2
equalizes the consumption of consumers with the face value of debt b for every realization
of the state ω and intermediaries dividends net of transfers from government T2.

Technology and financial contracts. At time 1, intermediaries choose how much as-
set, a, at price p to buy. By time 2, the intermediaries’ assets generate a random return
ω ¥ 0, which follows a distribution Fpωq � F with supppωq � r0, ω̄q. For simplicity,
we assume that

³
ωdFpωq � 1. Intermediaries finance their investment by issuing debt

with face value b, and price qpb,kq. We define leverage as the ratio of debt over assets,
ℓ � b

a . It needs to raise the difference in equity. Post-realization of returns in period 2,
intermediaries choose whether to default or not. If the intermediaries default, sharehold-
ers receive nothing while financiers are bailed out with probability π by the government,
in which case they receive b per unit of capital, otherwise, they receive χω per unit of
investment, where 0 ¤ χ ¤ 1. The remainder p1 � χqω measures the deadweight loss
or costs associated with default. If the intermediaries do not default, financiers are paid
b and shareholders receive the residual claim p1�ϕqpωa� bq in the form of dividends.
ϕ captures the costs of equity issuance or tax advantage of debt. Costs of default and
equity issuance costs ensures a non-trivial choice of capital structure. We assume that the
costs of bank equity are private and so that ϕpωa� bq is reimbursed to the consumers in
the form of lump sum transfers. Making the costs of equity social would not impact the
results qualitatively.

Regulation. The government finances bailouts by raising lump sum taxes from con-
sumers in period 2. The government balances his budget period by period so that

T2 �

» ℓ

0
π pℓ� χωqdFpωq.

The government is also able to impose a leverage cap on intermediaries at date 1. For-
mally, the governme requires that intermediaries set ℓ ¤ ξ, where 1�ξ is the minimal per-
mitted ratio of equity contribution to risky investment. This constraint imposes a leverage
cap, or equivalently, a minimal equity contribution per unit of investment.
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Equilibrium definition. An equilibrium is defined as a set of intermediary’s capital
structure d1,b,a,d2pωq and default decision, prices for intermediaries debt q and assets
p, such that (i) intermediaries maximize their expected net present value while taking
into account that any debt issued is valued by consumers, (ii) consumers maximize their
utility and (iii) the capital market clears, a � 1.

Our notion of equilibrium, in which intermediaries internalize that their borrowing
decisions affect their cost of financing in equilibrium, is standard in models of default.

H.2 Equilibrium characterization

We introduce Lemma 1 which presents a reformulation of the intermediary problem
whose solution characterize equilibrium leverage.

Lemma 1 (Intermediaries’ problem). Equilibrium leverage is given by the solution to the fol-
lowing reformulation of the problem faced by intermediaries:

v � max
ℓ

qpℓqℓ� p�βI

» ω̄

ℓ
pω� ℓqdFpωq (H.1)

where βp1�ϕq � βI, subject to the leverage constraint and the debt pricing equation

ℓ ¤ ξ, (H.2)

qpℓq � β

�» ω̄

ℓ
dFpωq �

» ℓ

0

�
π� p1� πq

χω

ℓ

	
dFpωq

�
. (H.3)

The size decision of the intermediary is then given by

max
a¥0

av.

Proof of Lemma 1. The problem that intermediary face at date 1, after anticipating their
optimal default decision, can be expressed as follows:

V � max
b,a,d1,d2pωq

d1 �βp1�ϕq

»
d2pωqdFpωq

subject to budget constraints at date 1 and in each possible state tω,πu at date 1, the
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capital requirement and the consumers’ debt pricing equation

d1 � qpb,aqb� pa, (H.4)

d2pωq � maxtωa� b, 0u, @ω (H.5)
b

a
¤ ξ, (H.6)

qpb,aq � β

�» ω̄

b
a

dFpωq �

» b
a

0

�
π� p1� πq

χωa

b

	
dFpωq

�
. (H.7)

Financiers take into account that higher intermediary leverage increases the probability
of a default. The intermediary internalizes this effect when making its leverage decision.

First, notice that intermediaries optimally default at date 1 whenever ω   ℓ, and repay
when ω ¥ ℓ. To solve the intermediary problem, divide the intermediary objective by a

to get

v � max
ℓ

d1 �βp1�ϕq

» ω̄

ℓ
pω� ℓqdFpωq

subject to the budget constraint at date 0 and the debt pricing equation

d1 � qpℓqℓ� p (H.8)

ℓ ¤ ξ, (H.9)

qpℓq � β

�» ω̄

ℓ
dFpωq �

» ℓ

0

�
π� p1� πq

χω

ℓ

	
dFpωq

�
. (H.10)

Substituting period 1 budget constraint into the objective function, we can rewrite the
problem as in the statement of the lemma. The size decision of the intermediary is then
given by

max
a¥0

av.

It is possible to fully characterize the equilibrium of the model by incorporating the
default decision of intermediaries at date 1 and the pricing of debt by consumers into the
intermediaries’ date 0 problem. First, notice that intermediaries optimally default at date
1 whenever ω   ℓ, and repay when ω ¥ ℓ. The first component of the objective func-
tion represents the equity issued/dividends paid by the intermediary in period 0 to the
consumers . The second component in equation (H.1) corresponds to the present value
of the equity payoffs. Since consumers are only paid in the non-default states, this inte-
gral is over states in which ω ¥ ℓ. The first constraint is the leverage constraint, which
states that the ratio of debt over assets cannot exceed ξ. The second constraint corre-
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sponds to the present value of the debt payoffs in default states (per unit), as perceived
by consumers. When intermediaries default (ω   ℓ), consumers receive χω per unit
of investment, which accounts for the deadweight losses of default. Intermediaries do
not directly benefit from government bailouts, and their objective function simply corre-
sponds to their market value at date 2. Nevertheless, markets generate implicit incentives
to capture government bailouts, because the implicit subsidy is accounted for in security
prices.

We are now ready to characterize the optimal solution to the intermediary problem in
the following proposition.

Proposition 4 (Equilibrium leverage). Equilibrium leverage ℓ� is given by the solution to

dv pℓ�q

dℓ
� β

» ℓ

0
πdFpωq � pβ�βIq

» ω̄

ℓ
dFpωqlooooooooooooooooooooomooooooooooooooooooooon

marginal benefits
(subsidy + valuation difference)

�βp1� πqp1� χqℓfpℓqlooooooooooomooooooooooon
marginal costs

(distress)

� λ. (H.11)

where λ is the Lagrange multiplier associated with the leverage constraint.

Three forces determine the marginal value of leverage, characterized in Equa-
tion (H.11). The first force corresponds to the additional leverage an intermediary is able
to raise because of the bailout subsidy in present value terms. The second force arises
due to the differences in valuation between intermediaries and consumers. By increasing
the leverage ratio ℓ, an intermediary is able to raise in present value terms βp1 � Fpℓqq

dollars per unit invested, whose repayment cost in present value terms corresponds to
βp1�ϕqp1� Fpℓqq. This second force is proportional to the difference in discount factors
β� βI ¡ 0. The third force corresponds to the marginal increase in deadweight losses
associated with defaulting more frequently after increasing leverage. These three forces
guarantee that equilibrium leverage is strictly positive.

Notice that

dv pℓq

dℓ
|ℓ�0� β�βI ¡ 0,

so that the intermediary find it optimal to choose non-negative leverage in equilibrium.
Therefore, for a given leverage constraint ξ, our problem always features a solution for
leverage in r0, ξs. The presence of bailout subsidies imply that intermediary would lever
up to the maximum leverage constraint ξ given the linearity of their problem so that ℓ � ξ.

Note that a positive amount of bank investment a ¡ 0 in equilibrium requires that the
expected profit per unit is zero, v � 0, which when combined with equation (H.1) gives
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intermediaries willingness to pay for a dollar of risky assets as

p � qpξqξ�βI

» ω̄

ξ
pω� ξqdFpωq. (H.12)

which corresponds the present value of the expected payoffs of the intermediary’s assets.
The first term corresponds to the present value of the expected payoffs of the debt is-
sued by the intermediary, while the second term corresponds to the present value of the
expected payoffs of the equity issued by the intermediary.

H.3 Comparative statics

First, we show how the equilibrium asset price p changes with the bailout probability π

and the leverage constraint ξ.

Lemma 2. The intermediaries willingnes to pay for a dollar of risky assets p is increasing in the
bailout probability π and in the leverage constraint ξ. The debt price q is increasing in the bailout
probability π and decreasing in the leverage constraint ξ.

Proof of Lemma 2. We start with studying changes in ξ. Given the expression for the asset
price,

p � β

�» ω̄

ξ
ξdFpωq �

» ξ

0
pπξ� p1� πqχωqdFpωq

�
�βI

» ω̄

ξ
pω� ξqdFpωq,

� β

» ξ

0
pπξ� p1� πqχωqdFpωq �

» ω̄

ξ
pβIω� pβ�βIqξqdFpωq,

We can differentiate the asset price with respect to ξ:

Bp

Bξ
� qpξq � ξ

Bq

Bξ
�βIp1� Fpξqq.

By using the first-order condition for leverage evaluated at ℓ � ξ, we can express the
derivative as exactly the marginal value of leverage, λ, which is positive. Therefore, the
asset price is increasing in ξ. Secondly, the asset price is increasing in π since

Bp

Bπ
� ξ

Bq

Bπ
� β

» ξ

0
pξ� χωqdFpωq ¡ 0.

Finally, the debt price is increasing in π since

Bq

Bπ
� β

» ξ

0
pξ� χωqdFpωq ¡ 0,
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and decreasing in ξ since

Bq

Bπ
� �βp1� πq

!
fpξq

�
1� χω

ξ

�
� χω

ξ2 Fpξq
)
  0.

Second, we are interested in understanding how the sensitivity of asset prices to
bailout probabilities and leverage constraints changes with riskiness of the asset. To do
so, we wanto to compare the derivatives characterized in Lemma 2 under perturbations
of the distribution of the asset returns. Since we have specified flexible distributions of
asset returns, we will characterize how the asset price sensitives to bailout probability
and leverage change with changes in the risky asset payoff distribution using variational
(Gateaux) derivatives. Formally, we consider perturbations of the form

Fpωq � εGpωq,

where Fpωq denotes the original cumulative distribution function of ω, the variation Gpωq

represents the direction of the perturbation, and ε ¥ 0 is a scalar. When Gpωq   0, it is
natural to say that for the perturbed distribution the probability assigned to states equal
or lower than ω is now higher. We consider variations Gpωq that are continuously dif-
ferentiable and satisfy Gp0q � Gpω̄q � 0. These conditions ensure that perturbed beliefs
are still valid cumulative distribution functions for small enough values of ε. In partic-
ular, we analyze perturbations Gpωq that induce lower risk in the sense of hazard-rate
dominance. Formally, an absolutely continuous distribution Fpωq becomes less risky in
the sense of hazard-rate dominance if the hazard rate hpωq � fpωq

1�Fpωq decreases for all
ω. This is a stronger requirement than first-order stochastic dominance, but a weaker re-
quirement than the monotone likelihood ratio property. Therefore, in terms of variational
derivatives, a perturbation Gpωq induces optimism in a hazard-rate sense if δhpωq

δF �G ¤ 0
for all ω (Dávila & Walther 2023).

Lemma 3. The sensitivity of the asset price p to the bailout probability π and the leverage con-
straint ξ in response to changes in the distribution of the asset payoffs is given by the following
variational derivatives:

δdp
dπ

δF
�G � βGpξqξp1� χq �βχ

» ξ

0
Gpωqdω,

δdp
dξ

δF
�G � �Gpξq

�
�βπ� pβ�βIq �βp1� πqp1� χqξ

gpξq

Gpξq



.

If we consider hazard-rate-dominant perturbations such that Gpωq   0, then the first derivative
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is negative and the second derivative is ambiguous and inversely related to π.

Proof of Lemma 3. Before proving the results, we prove the property of hazard rate pertur-
bations that we will use to show the main results of the lemma. The hazard rate after an
arbitrary perturbation is given by hpωq � fpωq�εgpωq

1�pFpωq�εGpωqq . Its derivative with respect to ε

takes the form

dhpωq

dε
�

gpωq

1� pFpωq � εGpωqq
�

pfpωq � εgpωqqGpωq

p1� pFpωq � εGpωqqq2
.

In the limit in which εÑ 0, for hazard-rate dominance to hold, it must be the case that
limεÑ0

dhpωq
dε   0, therefore

lim
εÑ0

dhpωq

dε
�

gpωq

1� Fpωq
�

fpωq

1� Fpωq

Gpωq

1� Fpωq
  0

ðñ gpωq �
fpωq

1� Fpωq
Gpωq   0

ðñ
gpωq

Gpωq
�

fpωq

1� Fpωq
¡ 0

ðñ
fpωq

1� Fpωq
¡ �

gpωq

Gpωq

where in the second-to-last line the sign of the inequality flips because Gpωq is nega-
tive, since hazard-rate dominance implies first-order stochastic dominance. We compute
δdp
dπ
δF �G as follows:

δdp
dπ

δF
�G � lim

εÑ0

�
β
³ξ

0 pξ� χωqd pF� εGq
	
�
�
β
³χ

0 pξ� χωqdF
�

ε

� β

�» ξ

0
pξ� χωqdGpωq

�
� βGpξqξ�βχ

» ξ

0
ωdGpωq

� βGpξqξp1� χq �βχ

» ξ

0
Gpωqdω,

where the last equality follows after integrating by parts. If we consider a distribution G

that dominates F in a hazard-rate sense, Gpωq   0, then it is clear that the derivative is

negative. In the same way, we can compute
δdp
dξ

δF �G as follows:

δdp
dξ

δF
�G � βπGpξq � pβ�βIqp1�Gpξqq �βp1� πqp1� χqξgpξq

� �Gpξq

�
�βπ� pβ�βIq �βp1� πqp1� χqξ

gpξq

Gpξq



.

If we consider a distribution G that dominates F in a hazard-rate sense, Gpωq   0, then it
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is sufficient to study the sign of the term in the parentheses:

�βπ� pβ�βIq �βp1� πqp1� χqξ
gpξq

Gpξq
.

At an interior optimum, Equation (H.11) implies that

dp

dξ
�

βπ

1� Fpξq
�βπ�β�βI �βp1� χqp1� πqξ

fpξq

1� Fpξq
� λ ¥ 0

or, equivalently,

βp1� πq �βI ¥ βp1� χqp1� πqξ
fpξq

1� Fpξq
�

βπ

1� Fpξq
.

Hazard-rate dominance implies that fpωq
1�Fpωq ¥ � gpωq

Gpωq , so the following relation holds:

βp1� πq �βI ¥ �βp1� πqp1� χqξ
gpξq

Gpξq
�

βπgpξq

fpξqGpξq

The sign of the expression is ambiguous and, in particular, it depends on the extent to
which creditors are bailed out. In particular, in the limit as π approaches 0, the term is
positive, and so the sign of the derivative is positive. But as π approaches 1, the term
can turn into negative as the bailout likelihood decreases the distress costs arising from
default. This can make the derivative negative.

The first derivative is negative under hazard-rate dominance pGpωq ¤ 0q. A less risky
distribution dampens the effect of bailouts (πx) on asset prices. Bailouts become more
impactful in riskier environments because higher default risk (more mass at ω   ξ )
increases the value of bailout guarantees; greater exposure to low-ω states (

³ξ
0 Gpωqdω ¥

0) raises the implicit subsidy from bailouts. If the payoff distribution has less mass in
the left tail (lower default likelihood), the bailout subsidy becomes less valuable. When
F shifts toward safer states pGpωq   0q, intermediaries and consumers anticipate lower
bailout transfers, which deflate asset prices. This makes bailout policies less potent in
propping up prices when assets are safer.

On the other hand, the sign of the variational derivative
δdp
dξ

δF �G depends critically on
the bailout probability π. The net effect is determined by the balance of three components:

�βπloomoon
Reduced marginal benefit

from bailouts

� pβ�βIqlooomooon
Valuation difference

(debt vs. equity)

�βp1� πqp1� χqξ
gpξq

Gpξqlooooooooooooomooooooooooooon
Marginal default cost

amplified by risk

.
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When π � 0, the net effect simplifies to:

pβ�βIq �βp1� χqξ
gpξq

Gpξq
¡ 0,

implying
δdp
dξ

δF �G ¡ 0. A safer distribution (Gpξq   0) increases the price sensitivity to
leverage constraints, as default costs are less important. Conversely, when π � 1, the net
effect becomes:

�β� pβ�βIq   0,

yielding
δdp
dξ

δF �G   0. With full bailouts, safer distributions decreases price sensitivity to
leverage constraints, as bailouts subsidize default risk. This non-monotonicity reflects
the interplay between bailout subsidies, valuation differences, and default costs. Policy-
makers must account for both asset riskiness and bailout expectations when designing
leverage constraints: higher capital requirements depress intermediaries willingness to
pay for risky assets, but the effect is more pronounced when more bailouts are expected.

H.4 Variance of equity returns, bailouts and regulation

With a binding leverage cap ℓ � ξ, per-unit-asset equity pays

ẽpωq �
�
1�ϕ

�
pω� ξq 1tω¥ξu, E0 � βI

» ω̄

ξ
pω� ξqdFpωqloooooooooomoooooooooon

�Apξq

,

so the gross equity return per dollar of initial equity is

REpωq �
ẽpωq

E0
�
pω� ξq1tω¥ξu

Apξq
, ErREs � 1.

Define28

σ2
Lpξq :� Fpξq, σ2

Rpξq :�

» ω̄

ξ

�
REpωq � 1

�2
dFpωq,

so that total variance satisfies

σ2
Epξq � σ2

Lpξq � σ2
Rpξq �

Bpξq

Apξq2
� 1,

28Apξq and Bpξq are standard “truncated moment” objects: Apξq �
³ω̄
ξ pω� ξqdF, Bpξq �

³ω̄
ξ pω� ξq2 dF.
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because σ2
L � Fpξq and σ2

R � pB{A2q � 1 � Fpξq. Using A 1pξq � �p1 � Fpξqq, B 1pξq �

�2Apξq, one obtains

Bσ2
L

Bξ
� fpξq ¡ 0 and

Bσ2
R

Bξ
�

2
�
p1� FpξqqBpξq �Apξq2

�
Apξq3

¡ 0 ,

where the strict inequality for σ2
R relies on Cauchy–Schwarz: Bpξqp1� Fpξqq ¥ Apξq2 with

equality only for degenerate payoffs.
Increasing the cap (higher ξ) raises both left-tail mass and right-tail dispersion; con-

versely, tightening capital regulation (lower ξ) reduces both contributions in the same direc-
tion. Thus the variance-cutting effect of stricter capital is “tail-symmetric.”

On the other hand, because the cap binds, ℓ � ξ is fixed by regulation and does not
respond to π:

Bξ

Bπ
� 0.

Equity pay-offs themselves never contain the bailout transfer, hence

Bσ2
L

Bπ
� 0 ,

Bσ2
R

Bπ
� 0 .

A change in the bailout probability π leaves both tails unchanged when leverage is already
capped. Bailout policy can affect equity-return variance only indirectly—by altering the
chosen leverage—once the cap ceases to bind; in that interior region the impact operates
through the left tail first and then transmits to the right via the leverage channel.

When the regulatory cap is loose enough that the intermediary’s optimal leverage is
determined by the first-order condition (H.11), with σ2

L � Fpℓ�q we have

dσ2
L

dπ
� fpℓ�q

dℓ�

dπ
¡ 0 =ñ π Ò ñ default probability rises.

Using the earlier derivative
Bσ2

R

Bℓ
�

2
�
p1� FqB�A2

�
A3 ¡ 0, the chain rule gives

dσ2
R

dπ
�
Bσ2

R

Bℓ

dℓ�

dπ
¡ 0 =ñ π Ò ñ right-tail dispersion rises.

Hence, bailouts affect equity variance only through the leverage choice. If the cap is
slack, higher π pushes ℓ� up, thereby raising both the frequency of default (left tail) and
the dispersion of surviving returns (right tail). Lower π does the opposite. Tightening ξ

that becomes binding compresses leverage directly and symmetrically trims both tails,
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independent of π.

H.5 Social-planner problem

The planner internalises all real resource costs—dead-weight default losses and
equity-issuance costs—while treating bail-out transfers and lump-sum taxes as pure
redistribution. Normalising the investment scale to a � 1 (linearity), the planner solves

max
ℓ¤ξ

Wpℓq :� β
�
�ϕ

» ω̄

ℓ
pω� ℓqdFpωqlooooooooooomooooooooooon

equity-issuance cost

� p1� χq

» ℓ

0
ωdFpωqlooooooooooomooooooooooon

default dead-weight loss

�
. (SP)

First-order condition. Denote the pdf by fpωq � F 1pωq. Differentiating W and imposing
the Kuhn–Tucker multiplier λSP for the cap constraint:

βϕ
�
1� Fpℓq

�
� βp1� χq ℓfpℓq � λSP (FOCSP)

with complementary-slackness λSPpℓ� ξq � 0, λSP ¥ 0. Comparing the FOCSP with the
FOCPriv in (H.11), we see that the planner internalizes the bailout subsidy as a transfer.
Therefore in distress, the planner percived the default costs are higher than the private
agent. Because both the marginal benefit is higher and the marginal cost is lower for
the intermediary, we have ℓSP   ℓPriv wheneve π ¡ 0.. Hence the planner faces a classic
regulation trade-off: choose ξ low enough to curb excessive leverage (and its dead-weight
default losses) yet not so low that it foregoes the efficiency gains from substituting cheaper
debt for costly equity. Formally, the optimal capital requirement satisfies

ξ� � ℓSP.

H.6 Optimal bailout policy

The social planner maximizes total welfare W, which equals the sum of consumer and in-
termediary utilities. Under risk neutrality, this reduces to minimizing deadweight losses
from default and equity costs. We derive the planner’s optimal bailout policy in three
steps.

Let ℓpπ, ξq denote equilibrium leverage under bailout probability π and cap ξ. Welfare
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per unit asset is:

Wpπ, ξq � �βϕ

» ω̄

ℓ
pω� ℓqdFpωqlooooooooooooomooooooooooooon

Equity costs

�βp1� χq

» ℓ

0
ωdFpωqlooooooooooooomooooooooooooon

Default losses

(H.13)

where ϕ captures equity issuance costs and χ recovery rates.
The private FOC for leverage (eq. H.11) equates marginal benefits (subsidy + valua-

tion gap) to marginal costs (default). The social planner internalizes externalities:

ℓSP � arg max
ℓ

Wpℓq

ñ βrϕp1� Fpℓqq � p1� χqℓfpℓqs � 0 (H.14)

Comparing (H.11) and (H.14) reveals ℓ�Priv ¡ ℓSP: private leverage exceeds the social opti-
mum due to bailout subsidies. When the cap is slack (ℓ�Priv   ξ), total derivative:

dW

dπ
�

BW

Bℓ

dℓ�Priv
dπloooomoooon

Indirect effect via leverage

where
BW

Bℓ
� βrϕp1� Fpℓqq � p1� χqℓfpℓqqs   0 (H.15)

dℓ�Priv
dπ

�
β
³ℓ�

0 dF�βp1� χqℓ�fpℓ�q

pβ�βIqfpℓ�q �βp1� πqp1� χqfpℓ�q
¡ 0 (H.16)

The negative indirect effect dominates, implying dW
dπ   0. Thus:

Proposition 5 (Optimal bailout policy). The welfare-maximizing bailout probability is:

π� � 0 (strictly optimal if cap is slack, weakly if binding)

Proof. When ξ binds (ℓ � ξ), dℓ
dπ � 0 ñ dW

dπ � 0. However, setting π � 0 remains weakly
optimal as bailouts only redistribute without affecting real allocations. For slack caps, the
negative leverage effect makes π � 0 strictly optimal.
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